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CHAPTER 1 

GENERAL INTRODUCTION 

Dissertation Organization 

This dissertation consists of five chapters. The first chapter is an introduction to the 

pathosystem involving soybean and soybean cyst nematode. Additionally, aspects of the 

methodology used in the research project are discussed and the rationale for the three 

following chapters is presented. The next three chapters are papers that will be submitted to 

the Crop Science. A general conclusion is presented in the last chapter. 

Introduction 

Soybean, Glycine max (L.) Merr., is a major source of vegetable oil produced 

worldwide (Wilcox, 2004), and soybean cyst nematode (SCN), Heterodera glycines 

Ichinohe, is one of the principal causes of soybean yield losses in the world. Economic losses 

caused by SCN surpass US$ 1 billion in the United States annually (Wrather et al., 2001), 

and yield reductions can occur even in the absence of noticeable symptoms (Niblack et al., 

1991; Wang et al., 2003; Young, 1996b). The economic importance of soybean crop, the 

large amount of agricultural land occupied with this crop throughout the world (Wilcox, 

2004), the difficulties in precisely quantifying SCN population densities, and the difficulties 

of visually determining the impact of SCN on soybean yield make this pathosystem 

appropriate for being studied using alternative technological and statistical approaches. 

Remote sensing technologies may detect stress on soybean plants before the stress can be 

detected by the human eyes. The use of GIS tools allows creating maps of geo-referenced 

remote sensing data that could be related to SCN population densities and quantity and 

quality of soybean yield. Additionally, geo-referenced data are adequate to be analyzed using 
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spatial statistics methods. Finally, by integrating spatial statistics and regressions methods, 

spatio-temporal changes in SCN population densities may be described. 

Soybean cyst nematode population dynamics 

To understand the impact that SCN can have on soybean yield, it is necessary first to 

understand SCN population dynamics within a growing season and how SCN population 

dynamics may be related to soybean yield. 

The factors affecting population densities of plant-parasitic nematodes could be 

classified into three categories: perfectly density dependent (intraspecific competition), 

imperfectly density dependent (interspecific competition, parasitism, and prédation), and 

density independent (abiotic conditions) (Boag, 1989). These three types of factors can 

influence SCN population density within soybean seasons. However, it is hypothesized that 

only imperfectly density-dependent and density-independent factors affect SCN populations 

over winter. During this period, the lack of a susceptible host and the effect of extreme 

weather conditions, particularly low temperatures and/or low soil moisture, inhibit biological 

activities of this obligate parasite (Young, 1995). 

Environmental factors may affect SCN development and reproduction. Soil 

temperature has been shown to affect all phases of the SCN life cycle. SCN juvenile survival 

in soil in the absence of the host is a result of the interaction among temperature, moisture, 

and soil type. SCN juvenile survive for longer in soil with moisture than in dry soil when the 

soil temperature is between 4 and 20 C, but above this temperature, the survival will be 

greater in dry soils up to soil temperature of 36 C (Slack et al., 1972). The rate of egg 

development and second-stage juvenile (J2) formation has a positive linear relationship with 

temperatures between 15 and 30 C, but the nematode eggs do not survive soil temperatures 

above 36 C (Alston and Schmitt, 1988). Infection of soybean roots by SCN juveniles does 

not occur at soil temperatures below 17 C, and the ideal temperature range for SCN female 
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development is from 20 to 28 C (Melton et al., 1986), with 26 C being the optimum 

temperature for cyst production (Anand et al., 1995). Soil temperatures above 30 C are 

detrimental to J2 and adult nematodes (Alston and Schmitt, 1988). 

Other environmental factors, such as soil pH, soil texture, and chemical elements in 

the soil also may affect SCN populations. Numbers of mature females were positively 

correlated with soil pH (Anand et al., 1995; Francl, 1993) and with soil magnesium (Francl, 

1993). Moreover, population densities of SCN cysts and eggs in the fall were negatively 

correlated with copper concentration (Francl, 1993). Besides chemical characteristics of the 

soil, soil texture also may affect SCN biological activities because soil moisture content and 

atmosphere composition in the soybean rizosphere can be affected by soil texture. 

Greenhouse experiments showed no difference in root penetration by SCN juveniles, but 

verified that SCN reproduction was greater in loam soils than in the clay soils (Young and 

Heatherly, 1990). Reproduction of SCN tended to be greater in coarse soil textures than in 

fine soil textures (Koenning and Barker, 1995), and high clay content in the lower horizons 

(15-45 cm) of soil profiles limited vertical growth of soybean roots and, thus, limited 

reproduction of SCN (Alston and Schmitt, 1987). Other factors that affect SCN reproduction 

are the genetic compatibility between SCN and its hosts (Chen et al., 2001b; Faghihi et al., 

1986; Sipes, 1995; Wang et al., 2000) and the developmental stage of soybean plants, since 

SCN reproduction is greater in soybean plants during the reproductive than the vegetative 

stages (Hill and Schmitt, 1989). 

Changes in environmental conditions caused by cultural practices also may influence 

SCN population dynamics. It was speculated that SCN reproduction may be stimulated by 

high oxygen levels since greenhouse experiments showed greater SCN reproduction occurred 

in disturbed than in undisturbed soils planted with soybean (Young, 1987). SCN reproduction 

in no-tillage production was reported to be equal (Chen et al., 2001a) or greater (Noel and 

Wax, 2003) than the reproduction in conventional soybean tillage production systems. Still, 
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the effects of tillage methods on SCN population densities can depend upon soil texture, and 

lower populations of the nematode were found in no-tilled than in tilled fields for soil 

textures with clay content equal or greater than silt clay loam (Workneh et al., 1999). 

However, different row spacing did not affect reproductive rates of SCN in a soybean/corn 

cropping system (Chen et al., 2001a). 

Spread of SCN has followed the expansion of the soybean crop to new areas (Riggs, 

1977), and the pathogen can be dispersed in association to soil particles for short and long 

distances (Slack et al., 1972). Wild animals also may disseminate SCN over long and short 

distances (Epps, 1971), however the importance of birds as agent of dissemination of SCN is 

not clear (Brodie, 1976). Besides physical dispersion of SCN, other factors, such as presence 

of host and environmental conditions, may affect the establishment of the pathogen in new 

areas. It has been suggested that the thresholds of establishment of SCN may vary with soil 

texture, and sand soils may have lower thresholds than fine-textured soils (Todd and Pearson, 

1988). 

Effects of SCN populations on soybean yield 

It was determined that high J2 population density at planting was responsible for 

increasing root damage and reduction in root volume (Bonner and Schmitt, 1985). Thus, 

development of soybean root system has a better development in sites with low J2 population 

density at planting, and larger root systems support high SCN population densities at harvest 

(Bonner and Schmitt, 1985). Since the only source of J2 at planting are SCN eggs from 

previous seasons, it is preferable to quantify eggs than cysts or just J2 in the soil to predict 

damage (Bonner and Schmitt, 1985). 

Initial SCN population densities have been shown to have a negative relationship with 

soybean yield (Francl and Dropkin, 1986; Koenning and Barker, 1995), and the yield benefit 
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of planting resistant instead of susceptible cultivars in SCN-infested fields has been shown to 

be linear and positively related to initial SCN population densities (Chen et al., 2001b). 

Intensity of soybean yield losses is affected by the time when infection occurs and by 

soil texture characteristics. Yield losses in SCN-susceptible cultivars decreased when root 

infection was delayed from 2 to 6 weeks (Wrather and Anand, 1988). Also, differences in 

yield of resistant and susceptible soybean cultivars with comparable yield potentials 

decreased as the sand content of the soils decreased in infested fields (Koenning et al., 1988). 

Knowledge about how SCN population dynamics impact soybean yield is very 

important for evaluating the efficacy of SCN management strategies and tactics. However, it 

is difficult to precisely determine SCN population densities and the effects these nematode 

population densities have on soybean yield because of the high sampling costs, inefficient 

soil extraction methods, and lack of knowledge concerning how both biotic and abiotic 

factors affect soybean yield in SCN-infested fields (Donald et al., 1999). Even in the 

presence of such limitations, a number of studies (Chen et al., 2001b; Ehwaeti et al., 2000; 

Francl and Dropkin, 1986; Francl and Wrather, 1987; Koenning and Barker, 1995; Noel and 

Edwards, 1996; Wrather and Anand, 1988; Young, 1996a) have been conducted to quantify 

the relationship between SCN population density and soybean yield, but these studies did not 

show how these relationships are spatially distributed within soybean fields or how SCN 

population dynamics affect soybean yield quantitatively and qualitatively. Likewise, 

although these previous studies evaluated both reproduction and survival of SCN, they did 

not examine or consider how these phenomena are spatially distributed in the fields. By 

sampling, estimating, and mapping SCN population densities in small quadrats for entire 

experimental areas, it should be possible to identify and characterize ecological factors 

affecting SCN population dynamics within and among seasons. Geographic information 

systems (GIS) offer the opportunity to generate maps of spatially referenced data. The tools 

present in GIS allow us to map and visualize how SCN population densities change in time 
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and space (Nutter et al., 2002). Additionally, utilizing GIS to display geo-referenced remote 

sensing data may provide means to visualize the impact of SCN population densities and 

other factors on quantity and quality of soybean yield. 

Assessing the spatial distribution of SCN population densities 

Spatial statistics have been shown to provide means to assess the spatial structure of 

nematode populations (Avendano et al., 2003; Avendano et al., 2004; Donald et al., 1999; 

Evans et al., 2002; Farias et al., 2002; Gavassoni et al., 2001; Morgan et al., 2002) and to 

assess soybean yield (Dobermann and Ping, 2004). However, the use of these statistical 

methods can be limited by the occurrence of errors in the determination of nematode 

population densities. Spatial statistical analyses have shown that soybean fields infested with 

H. glycines were initially aggregated and that no-tillage and ridge-tillage systems resulted in 

greater aggregation of H. glycines population densities over time compared to conventional 

and reduced tillage systems (Gavassoni et al., 2001). Although the spatial patterns of SCN 

distribution in soybean fields have been previously studied, very little is known about spatial 

patterns of reproduction and survival of the SCN within a field from season to season at a 

spatial scale that can lead to discovery of new ecological and biological information. 

Errors and the difficulties related to prediction of population dynamics of the potato 

cyst nematodes (PCN), Globodera spp., limited the development of site-specific management 

practices to control these nematodes (Evans et al., 2002). The integration of spatial statistics 

and regressions to study spatio-temporal changes in SCN population densities may provide 

information that can be used in the development of new SCN control programs. 
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Using remote sensing technologies to assess SCN population densities and 

soybean yield 

Optimizing the use of agronomic inputs in time and space, precision agriculture needs 

tools and techniques that facilitate site-specific management of crops (Pinter et al., 2003; 

Seelan et al., 2003). Remote sensing technologies that measure the percentage of sunlight 

reflected from soybean canopies may provide a means to obtain timely and accurate disease 

diagnoses and the means to differentiate and quantify plant stresses. Furthermore, reflectance 

measurements obtained from soybean canopies at different wavelength bands may indicate 

the presence of a plant stress, even when the stress cannot be visually detected. Thus, 

reflectance may be useful to detect stress caused by SCN in soybean plants, since, for this 

pathosystem, soybean yield reductions may occur even in the absence of visible symptoms 

(Niblack et al., 1991; Wang et al., 2003; Young, 1996b). Geographic information systems 

(GIS) allow displaying geo-referenced variables into maps. In this way, geo-referenced 

remote sensing data can be processed through GIS to provide spatial information about crop 

conditions that may be effective to site-specific management of crops. Additionally, mapping 

reflectance data obtained from soybean canopies may be used to provide early estimates of 

soybean yield. 

To be incorporated in the decision-making process to optimize agricultural, 

economical, and ecological results, precision farming demands high quality remote sensing 

data to be obtained in a timely fashion and to be related to plant physiological status and crop 

yield (Pinter et al., 2003; Seelan et al., 2003). Ground-based remote sensing can provide the 

high-resolution data that are required to implement site-specific management programs 

required for precision farming. To verify if remote sensing can be automatically incorporated 

to the decision-making process, it is needed to determine if the remote sensing data remain 

stable across different assessment dates and are strongly related to plant growth and yield. 
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Jackson published a review on use of remote sensing to detect plant stress (Jackson, 

1986), and several other researchers have addressed the use of these technologies to detect 

biotic (Carver and Griffiths, 1981; Gausman et al., 1975; Nutter, 1989; Nutter et al., 1990) 

and abiotic (Adams et al., 2000; Carver and Griffiths, 1981; Dale et al., 1982; Hansen and 

Schjoerring, 2003; Penuelas, 1998) plant stresses. Advantageously, these methods of 

assessing plant-health status can provide fast and reliable biological information with 

minimal disturbance of the crop (Nutter, 1989; Nutter et al., 1990). However, differences in 

atmospheric conditions (Liu and Huete, 1995; Xiao et al., 2003) and in soils characteristics 

(Gilabert et al., 2002; Haverkort et al., 1991; Huete, 1988; Huete et al., 1985; Liu and Huete, 

1995; Rondeaux et al., 1996; Weidong et al., 2002) can affect the quality of the remote 

sensing data. Thus, different authors expressed their concern about the limitations of remote 

sensing techniques in agriculture (Tucker, 1979; Wiegand et al., 1972). 

Knowledge of the potential sources of limitations of remote sensing should provide 

the framework to maximize its usefulness. Radiometers record reflectance data at specific 

wavelength bands and widths. These specifications can restrict the utility of the reflectance 

data since different wavelength bands and widths are affected differently by characteristics of 

the atmosphere, soil, and vegetation (Gitelson et al., 2002; Tucker, 1979). Height of the 

sensors, canopy type (Daughtry et al., 1982; Guan and Nutter, 2001), incident radiation, 

presence of water on the leaves (Guan and Nutter, 2001), and cultural practices (Kollenkark 

et al., 1982) influenced the quality of ground-based radiometer data. 

Any plant stress causes color and/or morphological changes in plant parts (Jackson, 

1986). Infection of soybean roots by SCN causes a reduction in the rate of above-ground 

plant growth that can result in a reduction in the amount of green leaf area (Koenning and 

Barker, 1995). The amount of green leaf tissue per unit of ground area is known as green leaf 

area index (GLAI) (Campbell and Madden, 1990). This index can be influenced by one or 

more plant stresses and often is highly related to yield (Guan and Nutter, 2000). To establish 
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the relationships between yield and GLAI and/or the change in GLAI with respect to time, 

the critical stages of crop development and frequency of data collection throughout the 

growing season need to be determined. Estimates of GLAI obtained during R4.5 and R5.5 

soybean growth stages, that correspond to pod elongation and seed filling in soybean plants 

(Fehr et al., 1971), were found to provide an accurate estimate of yield losses in determinate 

and in indeterminate soybean cultivars (Fehr et al., 1981). Maximum soybean yields were 

achieved when soybean plants reached GLAI of 3.5 - 4.0 at pod formation and pod 

elongation (Board, 2004; Board et al., 1997). The relationships between soybean growth, 

light interception, and yield have been previously demonstrated (Adcock et al., 1990; Batista 

and Rudorff, 1990; Board, 2004), and spectral data have been used to predict the 

developmental stage of soybean (Badhwar and Henderson, 1985; Henderson and Badhwar, 

1984). However, there is a lack of information about the variability and reliability associated 

with using ground-based remote sensing data to estimate aspects of quantitative and 

qualitative soybean yield throughout a season. 

Usually, radiometers measure reflectance from a target object at several different 

wavelength bands. These measurements of reflectance can be correlated to some 

characteristics of the target object (Perry and Lautenschlager, 1984). However, the 

relationships among individual wavelength bands and the target may differ from each other 

(Holben et al., 1980). Thus, to assess various characteristics of plant canopies, information 

contained within single wavelength bands can be used alone or different wavelength bands 

can be empirically combined in different ways to form indices, called vegetation indices 

(VFs). These indices may be correlated to canopy characteristics, such as leaf area index, 

fractional vegetation cover, biomass, and other vegetative conditions (Carlson and Ripley, 

1997; Perry and Lautenschlager, 1984). Ratios of reflectance and differences in reflectance 

between two different wavelength bands form the two major categories of indices, although 

there are other ways of calculating VI's. 
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Different VI's may have specific relationships with individual canopy characteristics. 

Soybean leaf area index had a positive linear relationship with the radiance ratio (545 nm/ 

655 nm) and with near infrared reflectance (750 nm) (Kanemasu, 1974). Infrared-to-red 

radiance ratios were found to have a positive linear relationship with soybean GLAI, soybean 

fresh biomass, and soybean yield (Batista and Rudorff, 1990; Holben et al., 1980; Kanemasu, 

1974). Red radiance was found to be linearly and negatively related to soybean GLAI 

(Holben et al., 1980; Kanemasu, 1974). Unlike previous reports, quadratic equations best 

described the relationships between soybean (dry) biomass and soybean leaf area index with 

red and near infrared reflectance, with near infrared-red radiance ratio, and with a 

transformed greenness vegetation index (Kollenkark et al., 1982). 

Positive, non-linear relationships between normalized difference vegetation index 

(NDVI), that is the ratio between the difference and the sum of near infrared and red 

radiances, and soybean GLAI were found to reach a saturation point at GLAI values between 

2 and 3 (Kollenkark et al., 1982). This same VI obtained from soybean canopies in which 

soybean plants were at R4 and R5 growth stages showed to be positively correlated with 

soybean grain yield (Ma et al., 1996). 

The difference vegetation index (DVI), that is the difference between infrared and red 

radiances, and the transformed vegetation index (TVI), that is a mathematical transformation 

of NDVI, were related to grass biomass (Tucker, 1979). The visible atmospheric resistant 

index (VARI) minimized atmospheric effects in the estimation of vegetation fraction of 

wheat and corn (Gitelson et al., 2002). The green normalized difference vegetation index 

(GNDVI), that is the ratio between the difference and the sum of near infrared and green 

radiances, accurately assessed chlorophyll content of plant canopies (Gitelson et al., 1996) 

and predicted com yield when assessments were made during midgrain filling (Shanahan et 

al., 2001). The photochemical reflectance index (PRI), that is the ratio between the difference 
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and the sum of radiances at 531 nm and 570 nm, has been shown to be correlated with 

radiation use efficiency of several plant species (Gamon et al., 1997). 

Distinct VI's are considered equivalent if they provide the same basis for decisions to 

be made (Perry and Lautenschlager, 1984). However, few evaluations were done to check 

equivalence among the VI used to assess soybean growth and yield. 

It has been showed that reflectance from soybean canopies can be used to determine 

soybean growth stage, to estimate soybean growth indicated as GLAI, and to estimate 

soybean yield. However, there is a lack of information about how stable the relationships the 

between reflectance from soybean canopies and GLAI are during growing seasons. Thus, to 

study the relationships between reflectance from soybean canopies and soybean GLAI within 

and between growing seasons is the first objective of this research. The relationships between 

reflectance from soybean canopies and soybean grain yield have been described, however, to 

our knowledge, there is no report of the use of reflectance data to assess quantity and quality 

of soybean yield. Besides, little is known about how the relationships between reflectance 

from soybean canopies and soybean yield change during a soybean-growing season. In this 

perspective, our second objective is to study the usefulness of reflectance data from soybean 

canopies obtained during the soybean-growing season to assess quantity and quality of 

soybean yield. Additionally, it is our objective to verify the potential of using reflectance data 

to assess SCN population densities in soybean fields. Finally, there are few reports describing 

simultaneously spatial and temporal changes in SCN population densities within and between 

growing seasons. Then, our third objective is to study spatio-temporal changes in SCN 

population densities in fields under soybean monoculture. 
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CHAPTER 2 

USE OF GROUND-BASED REMOTE SENSING TO ASSESS SOYBEAN GROWTH: 

EQUIVALENCE AND STABILITY OF THE INFORMATION 

A paper to be submitted to Crop Science 
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2 Abbreviations: GLAI, green leaf area index, VI, vegetation index, 1- RG, green 

percentage reflectance; RR, red percentage reflectance; RNIR, near infrared percentage 

reflectance; Reared, infrared percentage reflectance; Rw, being W a wavelength band in 

nanometers (nm) from which percentage reflectance is measured; RR, radiance ratio; NOVI, 

normalized difference vegetation index; TVI, transformed vegetation index; PRI, 

photochemical reflectance index; GNDVI, green normalized difference vegetation index; 

VARI, visible atmospherically resistant index; DVI, difference vegetation index; RDVI, 

renormalized difference vegetation index; PDW, plant dry weight; R2, linear coefficient of 

determination; SEEy, standard error of estimate for y. 
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Abstract 

A wide range of soybean [Glycine max (L.) Merr.] growth was generated in field experiments 

throughout 2002 and 2003. Soybean canopies were assessed periodically with a hand-held, 

multispectral radiometer measuring percentage reflectance at eight different narrow 

wavelength bands spaced 50 nm apart from 460 nm to 810 nm. After reflectance data were 

obtained, soybean plants were removed and green leaf area index (GLAI) determined. Within 

individual assessment dates, relationships among percentage reflectance of individual 

wavelength bands and vegetation indices with GLAI were studied using regressions. 

Percentage reflectance for 660 nm and for 810 nm had the best relationships with GLAI 

within assessment date and throughout each season. However, regression lines obtained for 

individual assessment dates were significantly different for the regressions obtained for entire 

seasons. The indices that best estimated variation in GLAI were radiance ratio (RR), 

difference vegetation index (DVI), and renormalized difference vegetation index (RDVI). 

Ground-based RDVI was not affected by environment conditions, and there was no 

significant difference between the regression lines of RDVI on GLAI obtained for individual 

assessment dates and those obtained for the entire 2002 and 2003 seasons. Results indicate 

that caution should be taken when percentage reflectance data obtained at different dates are 

combined to estimate GLAI. The ability of normalized difference vegetation index (NDVI), 

transformed vegetation index (TVI), and green normalized difference vegetation index 

(GNDVI) to estimate GLAI was equivalent throughout seasons. Plant dry weight (PDW) and 

GLAI were positive and linearly related. Similar relationships between percentage 

reflectance data and GLAI or PDW were observed. 
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Introduction 

Remote sensing in crop production has been linked to the use of satellite imagery and 

aerial photography to infer soil properties (Muller and Decamps, 2000; Weidong et al., 

2002), characteristics of plant canopies (Colombo et al., 2003; Colwell, 1974; Curran, 1983; 

Kanemasu, 1974; Mutanga and Skidmore, 2004; Mutanga et al., 2004; Sims and Gamon, 

2002; Thenkabail et al., 1994; Tucker, 1979; Wiegand et al., 1972; Wiegand et al., 1991), 

effects of biotic and abiotic stresses on crops (Adams et al., 2000; Adcock et al., 1990; 

Carver and Griffiths, 1981; Ceccato et al., 2002; Dale et al., 1982; Gausman et al., 1975; 

Guan and Nutter, 2000; Hansen and Schjoerring, 2003; Jackson, 1986; Kobayashi et al., 

2001; Ma et al., 1996; Nutter, 1989; Nutter and Littrel, 1996; Nutter et al., 1990; Nutter et al., 

2002b; Penuelas, 1998; Roberts et al., 1987), and to predict yield (Aparicio et al., 2000; Guan 

and Nutter, 2000; Ma et al., 1996; Ma et al., 2001; Nutter and Littrel, 1996; Nutter et al., 

2002a; Shanahan et al., 2001; Thenkabail et al., 1994). Even though the quality of satellite 

images of fields available has been improved and the availability of aerial images of fields 

has increased, problems still exist that restrict the use of these images in crop management. 

Image cost and resolution limit the minimum size of field areas assessed. Additionally, 

differences in atmospheric conditions (Liu and Huete, 1995; Xiao et al., 2003), in soil 

characteristics (Gilabert et al., 2002; Haverkort et al., 1991; Huete, 1988; Huete et al., 1985; 

Liu and Huete, 1995; Rondeaux et al., 1996; Weidong et al., 2002), and other environment 

conditions (Dale et al., 1982; Daughtry et al., 1982; Guan and Nutter, 2001; Kollenkark et al., 

1982; Milton, 1982) affect the quality of the remote sensing data. 

To be incorporated in the decision-making process to optimize agricultural, 

economical, and ecological results, precision farming demands high quality imagery to be 

obtained in a timely fashion and to be related to plant physiological status and crop yield 

(Pinter et al., 2003; Seelan et al., 2003). Ground-based remote sensing assessments can 

provide fast, non-destructive information about crop health that tend to be independent of 

individual evaluators (Adcock et al., 1990; Guan and Nutter, 2001; Nutter, 1989; Nutter et 
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al., 1990) and is not adversely affected by atmospheric conditions (Pontailler et al., 2003). 

Additionally, ground-based remote sensing can provide high-resolution data that are required 

to implement site-specific management programs required for precision farming. Thus, 

remote sensing can be automatically incorporated to the decision-making process if the 

extracted data remain stable across different assessment dates and are strongly related to 

plant growth and yield. 

For an appropriate evaluation of the health of annual crops, it may be necessary to 

collect data throughout the growing season to capture information in critical developmental 

phases of the crop. However, frequency of crop assessments cannot be easily adjusted when 

assessments depend upon satellite images (Moran et al., 1997). Seed filling is a critical 

period for soybeans when yield is linearly and positively related to the amount of light 

interception by the canopies (Board, 2004; Board et al., 1997). Additionally, it was 

demonstrated that intensity of soybean defoliation between pod elongation and seed filling, 

the R4.5 and R5.5 growth stages of soybean (Fehr et al., 1971), respectively, is critical to 

determine yield losses (Fehr et al., 1981). The relationships between soybean growth, light 

interception, and yield have been demonstrated, but there is a lack of information about the 

stability of the use of remote sensing data to assess soybean growth among and during 

different growing seasons. 

Remote sensing can obtain reflectance data at several wavelength bands that can be 

used individually or can be combined in different ways to test relationships with specific 

characteristics of plant canopies. By mathematically combining multispectral satellite data, 

different vegetation indices (VI) can be empirically obtained (Perry and Lautenschlager, 

1984). Ratios and differences between two specific wavelength bands form the two major 

categories of vegetation indices; however, there are other ways of mathematically calculating 

many other VI. These indices often are correlated with physical properties of plant canopies, 

such as leaf area index, fractional vegetation cover, biomass, and vegetation conditions 

(Carlson and Ripley, 1997). To be adopted remote sensing of percentage reflectance from 
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soybean canopies needs to be stable for multiple situations. Our study compares the ability of 

reflectance at different single wavelength bands and VI to estimate soybean GLAI among 

and during different the growing seasons. 

Different authors have expressed their concern about the limitations of the use of 

remote sensing techniques in crop production (Baret and Guyot, 1991; Guan and Nutter, 

2001; Huete et al., 1985; Jackson, 1986; Tucker, 1979). However, lack of published 

unsuccessful results gives the impression that it is easy to work in this field (Wiegand et al., 

1972). Knowledge of the limitations of remote sensing should provide us the framework to 

maximize its usefulness by applying it in the most appropriate manner. 

Several factors can affect the quality of reflectance data. Ground-based reflectance 

data can be affected by height of the sensors, canopy type (Daughtry et al., 1982), and 

cultural practices (Kollenkark et al., 1982). Furthermore, the choice of different band 

locations and band widths presented as an index creates restrictions to its use (Gitelson et al., 

2002; Tucker, 1979), since spectral measurements obtained at different wavelength bands are 

affected differently by characteristics of the atmosphere and soil and type of the vegetation 

(Jackson, 1986). Supporting this notion, mid-infrared data (from 1,550 to 2,350 nm) from 

Landsat thematic mapper data to calculate VI showed stronger relationships with soybean 

leaf area index, biomass, and yield than VI constructed using near-infrared data (from 760 to 

900 nm) from the same satellite (Thenkabail et al., 1994). 

Vegetation indices have been developed to minimize sources of errors in spectral 

data, such as interference from soil background and atmospheric conditions that compromise 

the reflectance measurements from crop canopies. Thus, different VI explore particular 

characteristics of spectral data and present singular properties that make these indices more 

or less affected by environmental factors and more or less related with some crop 

characteristics. 

There are several examples describing the relationships between VI and crop 

characteristics. The radiance ratio (R545/ R^ss) and the near-infrared reflectance (R750) had a 
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strong positive linear relationships with soybean leaf area index (Kanemasu, 1974). An 

infrared-red radiance ratio (Rinfrared/ Rred) and the infrared radiance were found to be linearly 

and positively related to soybean green leaf area index (GLAI) (Holben et al., 1980). Positive 

correlations were found between an infrared-red radiance ratio and soybean fresh biomass 

and soybean yield (Batista and Rudorff, 1990; Holben et al., 1980; Kanemasu, 1974). Red 

radiance was found to be linearly and negatively related with soybean GLAI (Holben et al., 

1980). In contrast to previous reports with linear models, quadratic equations best described 

the relationships between soybean dry biomass and leaf area index with red reflectance, near-

infrared reflectance, near-infrared-red radiance ratio (RNIR/RR), and also with a greenness 

transformation vegetation index (Kollenkark et al., 1982). It was reported that there was a 

positive, nonlinear relationship between normalized difference vegetation index, NDVI 

((RNIR - RAED)/ (RNIR + RNED)), and soybean GLAI that reached a saturation point at GLAI 

values between 2 and 3 (Kollenkark et al., 1982). When assessing different soybean 

genotypes, soybean grain yield was found to be highly positively correlated to NDVI 

obtained at different assessment dates; however, correlations were the strongest between 

soybean growth stages R4 and R5 (Ma et al., 1996). The difference vegetation index, DVI 

(Rinfrared - R-Red), and transformed vegetation index, TVI ((NDVI+0.5)0'5), were related to 

grass GLAI (Tucker, 1979). The visible atmospheric resistant index, VARI ((R560 -

R660)/(R-560 + RÔÔO - R460)), minimized atmospheric effects to estimate the vegetation fraction 

of both wheat and com fields (Gitelson et al., 2002). A green normalized difference 

vegetation index, GNDVI ((RNIR - Roreen)/ (RNIR + Roreen)), accurately assessed chlorophyll 

content at canopy level of several crops (Gitelson et al., 1996) and predicted com yield when 

assessments were made during the midgrain filling period (Shanahan et al., 2001). 

Photochemical reflectance index, PRI ((R531-R570)/ (R531+R570)), was correlated with 

radiation use efficiency of several plant species (Gamon et al., 1997). 

Contradictory reports about the relationships of VI with soybean growth and with 

soybean yield may be due to differences in and of band locations and band widths used to 
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calculate the VI, lack of a sufficient numbers of observations to allow the description of the 

relationships to be accurately made, and the occurrence of temporal variation in the 

relationships of a specific vegetation index with soybean growth and yield. By generating a 

wide range of plant growth throughout multiple growing seasons and by intensifying 

sampling, it is possible to test the relationships between reflectance data and soybean growth 

over time. 

The intensity of biotic and abiotic stresses on soybean crops may vary within seasons 

and/or within fields. As results of these stresses, a wide range of plant growth can be 

generated in soybean fields. The relationships between soybean growth, light interception, 

light reflectance, and soybean grain yield have been demonstrated, but there is a lack of 

information about the equivalence and stability of use of reflectance data and VI to assess 

soybean growth during the growing season. VI may be considered equivalents if they provide 

the same information about a particular crop condition in a given time (Perry and 

Lautenschlager, 1984). Stability is defined by the lack of variation in the relationships 

between percentage reflectance data and GLAI that is observed when the crop is assessed at 

different times within a season and between seasons. A number of indices have been used to 

assess plant growth in general and soybean growth in particular, but to our knowledge no 

evaluation has been done about VI equivalence and stability for estimating GLAI within and 

across soybean seasons. This information would be important to describe temporal variations 

in soybean growth in fields and to provide information about the impact of plant stresses and 

any crop management practice on crop growth. Additionally, the resolution of ground-based 

reflectance data may provide information about plant growth that is required for site-specific 

management of a soybean crop. Therefore, the main goal of this study was to evaluate the 

ability of assessing soybean canopy development as indicated by GLAI throughout growing 

seasons by constructing and comparing VI using ground-based reflectance data. Moreover, 

the relationships between different wavelength bands and between different VI were 

examined and their ability to estimate GLAI within and across seasons was evaluated. 
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Materials and Methods 

This study was conducted at the Iowa State University Hinds Farm, Ames, Iowa, 

during the 2002 and 2003 seasons. The experimental field was located at 42.06321° north 

and 93.61766° west and contained a loam soil (20.2% clay, 45.0% sand, 34.8% silt) with 

2.4% organic matter. Soybeans were planted every 5 to 10 days from late April to mid July in 

both seasons to generate a wide range of plant growth. Four rows of soybean cultivar AgriPro 

1702 RR, 76 cm apart, were planted at a seeding rate of 30 seeds per meter at each planting 

date. 

In 2002, four assessments of reflectance of sunlight from soybean canopies at 

intervals of 10 to 14 days from 23 July 2002 to 30 August 2002 were obtained. In 2003, 

seven assessments of canopy reflectance were obtained between 14 July 2003 and 27 August 

2003 at intervals of 6 to 13 days. On each assessment date, canopy reflectance was measured 

from 12 arbitrarily selected circular plots (1.5-m diameter) that provided a wide range of 

plant growth as indicated by GLAI within each assessment date. A single, hand-held, 

multispectral radiometer (model MRS-87, CROPSCAN, Inc., Rochester, MN) was used to 

measure percentage of incident sunlight radiation that was reflected by soybean canopies. 

Percentage reflectance was measured at eight wavelength bands with midpoint values of 460, 

510, 560, 610, 660, 710, 760, and 810 nm, and bandwidths of 27.0, 32.3, 25.0, 26.9, 25.5, 

32.9, 28.0, and 31.7 nm (Cropscan, 1994), respectively, for each wavelength band. The 

radiometer was placed over the center of the plot between two rows with its sensors at 3-m 

height to measure reflectance from each circular plot. Five percentage reflectance 

measurements were obtained from each plot and averaged. Assessments were made under 

cloudless sky between 1100 and 1400 hours central standard time (CST) (Guan and Nutter, 

2001). 

Since the radiometric data, such as band location and width, are characteristics of the 

radiometer model, some of the indices presented here are approximations of previously 

published indices that have been used to detect differences in plant canopy development. The 
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percentage reflectance (R) at different wavelength bands (W subscripts) was used to obtain 

the vegetation indices evaluated in this study. The different indices evaluated were: 

1. Green, Rc = (R510 + R-56o)/2 

2. Red, RR = (REM + RE6O)/2 

3. Near Infrared, Rnir = (R76O+ Rsio)/2 

4. Radiance Ratio 1, RRi = Rnir/Rr (Batista and Rudorff, 1990; Holben et al., 1980; Tucker, 

1979) 

5. Radiance Ratio 2, RR2 = Rsio/Rôôo 

6. Radiance Ratio 3, RR3 = Rgio/R^io 

7. Radiance Ratio 4, RR, = R760/R660 

8. Radiance Ratio 5, RR5 = Rygo/Raio 

9. Normalized Difference Vegetation Index 1, NDVI, = (Rnir - Rr)/(Rnir + Rr) (Holben et 

al,1980) 

10. Normalized Difference Vegetation Index 2, NDVI2 = (Rgio - RôôoVCRsio + Rsôo) 

11. Normalized Difference Vegetation Index 3, NDVI3 = (Rsio- R6io)/(R8io+ Rem) 

12. Normalized Difference Vegetation Index 4, NDVI4 = (R760- R660)/(R?60 + Rôôo) 

13. Normalized Difference Vegetation Index 5, NDVI5 = (R76o- R6io)/(R?60+ Reio) 

14. Normalized Difference Vegetation Index 6, NDVIg = (R760- R7io)/(R760+ R710) 

15. Transformed Vegetation Index 1, TVI, = (NDVI, + 0.5)0 5 (Tucker, 1979) 

16. Transformed Vegetation Index 2, TVI2 = (NDVI2 + 0.5)°5 

17. Transformed Vegetation Index 3, TVI3 = (NDVI3 + 0.5)0 5 (Huete et al., 1985) 

18. Transformed Vegetation Index 4, TVI4 = (NDVI4 + 0.5)°5 

19. Transformed Vegetation Index 5, TVI5 = (NDVI5 + 0.5)°5 

20. Transformed Vegetation Index 6, TVIe = (NDVI6 + 0.5)°5 

21. Photochemical Reflectance Index, PRI = (R510 - R57o)/(R5io + R570) (Gamon et al., 1997) 

22. Green Normalized Difference Vegetation Index 1, 
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GNDVIi = (RNIR - RG)/(RNIR + RG) (Chang et al., 2003; Gitelson et al., 1996; Shanahan et 

al., 2001) 

23. Green Normalized Difference Vegetation Index 2, GNDVI2 = (Rsio - RSÔOVCRSIO + R560) 

24. Green Normalized Difference Vegetation Index 3, GNDVI3 = (Rg,o - RsioVtRsio + R510) 

25. Green Normalized Difference Vegetation Index 4, GNDVI4 = (R760 - R560)/(R?60 + RSÔO) 

26. Green Normalized Difference Vegetation Index 5, GNDVI5 = (R760 - R5io)/(R?6o + R510) 

27. Visible Atmospherically Resistant Index, VARI = (R560 - RÔÔOVCRSÔO + Reeo - R460) 

(Gitelson et al., 2002) 

28. Difference Vegetation Index 1, DVI, = (RNIR - RR) (Tucker, 1979) 

29. Difference Vegetation Index 2, DVI2 = (Rg,o - RÔÔO) 

30. Difference Vegetation Index 3, DVI3 = (Rgio-Rsio) 

31. Difference Vegetation Index 4, DVI4 = (R76O - RÔÔO) 

32. Difference Vegetation Index 5, DVI5 = (R76O - R010) 

33. Renormalized Difference Vegetation Index 1, RDVI, = (NDVI, * DVI,)0 5 (Broge and 

Leblanc, 2000; Roujean and Breon, 1995) 

34. Renormalized Difference Vegetation Index 2, RDVI2 = (NDVI, * DVI2)°5 

35. Renormalized Difference Vegetation Index 3, RDVI3 = (NDVI, * DVI3)0 5 

36. Renormalized Difference Vegetation Index 4, RDVI4 = (NDVI, * DVI4)0 5 

37. Renormalized Difference Vegetation Index 5, RDVI5 = (NDVI, * DVI5)0 5 

After measuring canopy reflectance, the aboveground portions of all plants within 

each plot were harvested, and ten plants were arbitrarily selected for measuring their green 

leaf area using an area meter (model LI 3100, LI-COR, Inc., Lincoln, NE). Between removal 

and measuring of green leaf area, the samples were kept refrigerated. All of the yellow and 

necrotic parts of leaves were removed prior measuring the green leaf area of the samples. 

From each plot, the ten-plant sample and the remaining plants were kept separated 

and both were dried at 60°C for 48 hours using a forced air oven. After this period in the 

oven, the dry weight of the remaining plants within each plot and the dry weight of the 10 



www.manaraa.com

31 

plants arbitrarily selected were obtained. The sum of the dry weight of the remaining plants 

within a plot and the dry weight of 10 plants arbitrarily selected from the same plot was 

calculated to obtain the total dry weight of the plants within a plot. The total dry weight of 

plants within a plot was called plant dry weight (PDW). The ratio between green leaf area 

and dry weight of the ten-plant sample was calculated and this ratio was multiplied by PDW 

to obtain the total green leaf area per plot. The total green leaf area for each plot was divided 

by the plot area (1.767 m2) to obtain the green leaf area index (GLAI). 

Statistical analyses were done using S-Plus statistical software (Mathsoft, Inc., 

Cambridge, MA), and graphs were prepared using Sigma Plot (SPSS, Inc., Chicago, IL). To 

determine the relationships among wavelength bands, VI, GLAI, and PDW, scatter plot 

matrixes were prepared. Natural-logarithmic transformation of the data was done to eliminate 

problems with the residuals when linear regression was applied. Residual plots, P-values, 

coefficients of determination (R2), and standard error for estimate of y (SEEy) of regression 

models were considered to determine the wavelength bands and VI that had the best 

relationships with GLAI (Campbell and Madden, 1990). 

The general linear test approach tested if the individual-assessment-date models 

within seasons could be reduced to full-season models describing the relationships between 

percentage reflectance data and GLAI within growing seasons (Neter and Wasserman, 1974). 

Similarly, this statistical test was used to compare regressions of reflectance data on GLAI 

obtained at different seasons. The relationships between PDW and GLAI with reflectance at 

different wavelength bands and vegetation indices were investigated, and the relationships 

between GLAI and PDW were described. 

Results 

The relationships among the percentage reflectance values for the individual 

wavelength bands are presented in Table 1. Positive linear relationships (P < 0.0001) were 

observed among percentage reflectance values for pairs of individual wavelength bands from 
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460 nm to 660 nm, and between 760 nm and 810 nm. There was no significant linear 

relationship between percentage reflectance values obtained for each infrared wavelength 

band (760 and 810 nm) and percentage reflectance values obtained at 710 nm (P > 0.5). 

Negative linear relationships (P <0.018) among percentage reflectance of visible wavelength 

bands (from 460 to 660 nm) and percentage reflectance of infrared wavelength bands were 

observed. Coefficient of determination (R2) values ranged between 0.97 and 0.99 for the 

regressions of percentage reflectance among 460, 510, 610, and 660 nm wavelength bands, 

and was 0.99 between percentage reflectance at 810 and at 760 nm within seasons. Linear 

relationships among percentage reflectance at 710 nm and any other wavelength band in the 

visible spectrum had R2 varying from 0.44 to 0.80. 

Percentage reflectance-GLAI scatter plots for specific wavelength bands for the 2002 

and 2003 growing seasons are shown in Figs. 1 and 2. The best regression models describing 

the relationships between percentage reflectance for individual wavelength bands and GLAI 

were chosen based on the probability associated with the F-statistic, R2, residual standard 

error, and the residual. For the 760 and 810 nm wavelength bands, linear models best 

described the relationships of GLAI and percentage reflectance within each assessment date 

and within seasons (Table 2). Linear relationship between percentage reflectance at 710 nm 

and GLAI was not significant in 2002 (P = 0.27), but it was significant in 2003 (P = 0.0049, 

R2 = 9%). Natural-logarithmic transformations of percentage reflectance (460, 510, 560, 610, 

and 660 nm) and GLAI linearized the relationships between these variables and provided the 

best models for specific assessment dates and for the entire 2002 season (Table 3). For these 

same wavelength bands, a natural-logarithmic transformation of percentage reflectance 

regressed on untransformed GLAI provided the best models describing the relationships 

between percentage reflectance and GLAI in 2003 (Table 4). Among the visible wavelength 

bands (from 460 nm to 710 nm), percentage reflectance obtained at 660 nm best estimated 

GLAI in 2002 and 2003 (Tables 3 and 4). 
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The regressions of percentage reflectance for individual wavelength bands on GLAI 

had lower R2 when analyzed for the entire seasons of 2002 and 2003 than when analyzed for 

individual assessment dates (Tables 2, 3 and 4). 

The general linear test approach (Neter and Wasserman, 1974) was used to determine 

if the regressions of reflectance data on GLAI obtained at individual assessment dates could 

be reduced to single, overall, full-season regressions. The null hypothesis for this test is that 

there is no difference between reduced (annual regressions for individual wavelength bands) 

and individual-assessment-date models (models for each specific assessment date for a 

specific wavelength bands). The null hypothesis was rejected for all wavelength band-GLAI 

relationships in 2002 and in 2003 (Table 5). 

It was not possible to use full-season models for describing the relationships between 

natural-log-transformed reflectance data at 660 nm and natural-log-transformed GLAI data 

within the 2002 (F = 8.11, P = 0.001) and 2003 (F = 6.81, P = 0.002) growing seasons. 

However, there was no significant difference (F = 0.07, P = 0.93) between the overall annual 

regressions of these two variables obtained 2002 and 2003 (Fig. 3A). 

Regression of percentage reflectance at 810 nm on percentage reflectance at 760 nm 

showed a strong linear relationship (Y = 0.73 + 1.08 X, R2 = 0.99; Y = 0.90 + 1.10 X, R2 = 

0.99) in 2002 and 2003 (Table 1). Positive linear relationships between the percentage 

reflectance for infrared wavelength bands and GLAI also were obtained within each 

assessment date and for the entire seasons (Table 2). Applying the general linear test 

approach, the regression lines obtained within each assessment date (individual-assessment-

date model) with the regression lines obtained for the entire seasons (full-season model) were 

compared. For the regressions of percentage reflectance at 760 nm on GLAI, the reduced and 

individual-assessment-date models were dissimilar for the 2002 (F = 6.79, P <0.003) and 

2003 (F = 19.75, P< 0.0001) growing seasons. The same results were observed for the 

regressions of percentage reflectance at 810 nm on GLAI when individual-assessment-date 

model and full-season models were compared in 2002 (F = 6.25, P <0.004) and 2003 (F = 
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18.47, P < 0.0001) (Table 5). Additionally, there was a significant difference (F = 16.69, P < 

0.0001) between regression lines of percentage reflectance at 760 nm on GLAI obtained for 

2002 and 2003 (Fig. 3B), and between regression lines of percentage reflectance at 810 nm 

on GLAI obtained for 2002 and 2003 seasons (F = 17.09, P < 0.0001) (Fig. 3C). 

Using percentage reflectance from slightly different wavelength bands to calculate 

VI, variations of the same type of vegetation indices were obtained. Each variation was 

identified by the subscripts following the index names. Correlation coefficients among the 

indices variations were greater than 0.99 for RR, DVI, RDVI, and GNDVI, and greater than 

0.97 for NDVI and TVI. Due to the high similarity observed among the variations of single 

indices, just RR,, DVI,, NDVI,, RDVI,, TVI,, GNDVI,, PRI, and VARI were used to show 

the relationships among VI, GLAI, and PDW in scatter plot matrixes for 2002 and 2003 (Fig. 

4). The relationships were similar across these two years, and all of the indices were 

positively related with each other, except PRI, which was negatively related with all other 

indices. Linear relationships were observed between NDVI, TVI, and GNDVI (Table 6), and 

between VARI, DVI, and RDVI (Table 7). 

GLAI and PDW were positively related with all of the indices, except PRI. Similarly, 

positive linear relationships (P < 0.0001) were obtained between GLAI and RR,, DVI,, and 

RDVI, (Fig. 5). For the same years, natural-logarithmic transformation of GLAI had a 

positive linear relationship (P < 0.0001) with NDVI,, TVI,, and GNDVI, (Fig. 6). The 

coefficients of determination (R2) of the regressions of VI on GLAI or on natural-

logarithmic-transformed GLAI throughout the 2002 and 2003 seasons showed that the 

relationships were stronger within assessment dates than within seasons (Fig. 5, 6, and 7). 

Regressions of VI on logarithmic transformed GLAI tended to have higher R2 values at 

different assessment dates within seasons than the regressions of VI on GLAI (Fig. 7). 

Based on the general linear test approach, it was showed that the RDVI, full-season 

model analysis for the entire seasons of 2002 and 2003 did not differ statistically from the 

individual-assessment-date model analyses that considered each assessment date separately 
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(Table 8). In 2003, the individual-assessment-date models involving RR,, VARI, NDVI,, 

TVI,, and GNDVI, did not differ statistically (P > 0.05) from the full-season models (Table 

8). For all VI, the regression lines for 2002 and 2003 differed statistically (P <0.05). 

Positive linear relationships between PDW and GLAI within each assessment date 

and within 2002 and 2003 seasons are presented (Fig. 8). The relationships between GLAI 

and VI were very similar to the relationships between PDW and VI (Fig. 4); however, more 

variability is present in the PDW-VI relationships. 

Discussion 

Precision agriculture requires real time information about crop conditions to allow 

implementation of management tactics to reduce pollution, improve yield, and to maximize 

the return on investment (Seelan et al., 2003). Ground-based reflectance sensors can provide 

the data about canopy conditions needed for site-specific management in a timely fashion. In 

order to test this hypothesis, it is necessary to evaluate the quality and quantity of sunlight 

reflected from crop canopies that can be measured by ground-based radiometers throughout 

seasons. The quality of the reflectance data can be assessed studying the relationships among 

percentage reflectance for individual wavelength bands or VI and the variables of interest, 

such as GLAI, PDW, plant stresses, and yield. 

It was previously shown that measurements of soybean GLAI at critical 

developmental stages of the crop could be used to estimate yield (Board, 2004; Board et al., 

1997; Fehr et al., 1981). However, periodical assessment of GLAI may be necessary to assess 

the effects of plant stresses on crop development throughout growing seasons (Pinter et al., 

2003; Seelan et al., 2003). Our study showed that ground-based radiometer measurements of 

reflectance could be used to provide accurate estimations of GLAI during soybean growing 

seasons. We also illustrated how different assessments of reflectance from soybean are 

related to each other throughout crop seasons. These relationships are extremely important in 
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order to monitor the development of plant stresses after their detection and to verify efficacy 

of management practices implemented to mitigate those stresses. 

Information about a crop is just one part of the composite data captured by radiometer 

readings (Jackson, 1986). Thus, it is necessary to understand how reflectance data relate with 

agronomic variables of interest throughout seasons and under different environmental 

conditions. We found that percentage reflectance for the wavelength bands tested in our work 

were not sensitive to low values of GLAI, and the reflectance for wavelength bands in the 

visible spectrum of light were not sensitive to GLAI above 2 or 3. Measuring percentage 

reflectance from soybean canopies, we found that wavelength bands from 460 to 660 nm 

were highly linearly related, and this relationship also was true for the near infrared 

wavelength bands (760 nm and 810 nm). This result suggests that percentage reflectance 

from those linearly related wavelength bands provide similar information about soybean 

canopies, a conclusion that was verified by the similarities in estimation of soybean GLAI by 

reflectance from those bands. Reflectance from individual wavelength bands can be 

considered functionally equivalent if they have an equal effect in the decision-making 

process (Perry and Lautenschlager, 1984). Consequently, percentage reflectance from 

wavelength bands from 460 to 660 nm and between 760 and 810 nm can be considered 

equivalent in their ability to estimate soybean GLAI. Then, the only justification to use any 

one of the visible or infrared wavelength bands is the ability of a particular wavelength band 

to improve the regression fit when regressed against the variable of interest (Perry and 

Lautenschlager, 1984). In this perspective, percentage reflectance from the wavelength bands 

centered at 660 nm and 810 nm provided the best relationships with GLAI for the 

wavelength bands in the visible and infrared spectra, respectively. Our research confirmed 

that percentage reflectance from red (660 nm) and infrared (810 nm) wavelength bands 

provided the best relationships with GLAI and these wavelength bands should be used to 

create VI, but it also showed the potential of using percentage of reflectance from blue (460 
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nm), green (510 nm), and orange (610 nm) wavelength bands to accomplish the same 

objectives. 

The results of our work agree with those of Holben et al. (1980) who described the 

basic relationship between percentage reflectance of infrared wavelength bands and GLAI 

for soybean. However, we observed higher coefficients of determination than previously 

reported. Also, there were negative curvilinear relationships between all visible wavelength 

bands up to 660 nm and GLAI in our data, but Holden et al. (1980) found that the occurrence 

of outliers suggested a linear relationship instead of a curvilinear relationship between 

reflectance from red wavelength band and GLAI. 

Slopes and intercepts for the regressions of individual wavelength bands on GLAI 

differed statistically among assessment dates. Additionally, our study showed that there are 

statistical differences among regression lines obtained for different assessment dates 

(individual-assessment-date models) and the regression lines obtained by combining all data 

for individual wavelength bands from one season (full-season models). Previous research 

(Batista and Rudorff, 1990; Holben et al., 1980; Kanemasu, 1974; Tucker, 1979) did not 

account for that possible sort of variability, and more additional work is needed to establish 

the set of conditions necessary to minimize the within-season variation in the dataset. 

Considering that percentage reflectance can be used to estimate GLAI and that GLAI 

can be used to predict soybean yield, problems with the variability of reflectance-GLAI 

relationships during the season are eliminated if the yield prediction is made based on a 

single assessment of percentage reflectance during a critical period of crop development 

(Batista and Rudorff, 1990; Board, 2004; Board et al., 1997; Fehr et al., 1981; Holben et al., 

1980; Kanemasu, 1974; Kollenkark et al., 1982). However, if percentage reflectance data 

obtained at different stages of crop development are integrated into crop yield models, the 

variability of the GLAI-percentage-reflectance relationship may negatively impact the model 

output. Moreover, this variability can reduce the usefulness of percentage reflectance data in 
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monitoring changes in crop development, assessing plant stresses, and evaluating efficacy of 

crop management practices. 

Similarities of the slopes and intercepts for the individual-assessment-date models 

and for the full-season models indicate stability of the percentage reflectance measurements 

for multiple situations. Despite of the differences of regression lines of percentage 

reflectance on GLAI, it is important to note that regressions of percentage reflectance at 660 

nm on GLAI obtained in 2002 and 2003 did not differ statistically. The wavelength band 

centered at 660 nm may provide data that will assess crop health status in specific fields over 

long periods of time. 

Linear and curvilinear relationships between different pairs of VI were observed in 

our work. Positive linear relationships among NDVI, TVI, and GNDVI, and among VARI, 

DVI, and RDVI were observed. Similarities between percentage reflectance from soybean 

canopies for red (660 nm) and green (510 nm) wavelength bands explain the strong linear 

relationship between NDVI and GNDVI. 

The VI that had the best linear relationships with GLAI were RR, DVI, and RDVI, 

and those with the best linear relationship with transformed GLAI were NDVI, TVI, and 

GNDVI during 2002 and 2003 seasons. The linear relationship between RR and soybean 

green biomass and soybean yield was previously reported (Batista and Rudorff, 1990). Linear 

coefficients of determination (R2) for the relationships of NDVI, TVI, and GNDVI with 

GLAI were similar and varied uniformly throughout seasons. This common behavior 

supports the notion that NDVI, TVI, and GNDVI were equivalent to estimate soybean GLAI. 

The stability of the relationships between percentage reflectance data and GLAI 

during the crop season justifies the use of full-season models combining all percentage 

reflectance data obtained within a season to estimate GLAI. Among all possibilities tested in 

our study, only RDVI allowed the use of full-season models to estimate GLAI in both 2002 

and 2003 seasons. 
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Linear relationships between GLAI and PDW were observed within different 

assessment dates and for the entire seasons of 2002 and 2003. The relationships of VI and 

individual wavelength bands with GLAI were stronger than with PDW. Thus, there is the 

possibility of using percentage reflectance data to assess soybean biomass. 

The work reported herein provides important information about the usefulness of 

percentage reflectance data to assess soybean growth during growing seasons. To expand the 

significance of our results, research verifying the effect of different environments, soybean 

varieties, and different soil types on the relationships between percentage reflectance data 

and GLAI should be implemented. The results of such work would provide the basis to 

justify the adoption of percentage reflectance in large scale to detect biotic and abiotic plant 

stresses that affect GLAI, to evaluate crop management practices, and to predict soybean 

yield. 
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Table 1. Relationships, coefficient of determination (R2), and standard error of estimate for y (SEEy) among percentage 

reflectance from soybean canopies for individual wavelength bands obtained during the 2002 and 2003 seasons. 
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2002 

2003 

2002 

2003 

2002 

2003 

2002 

2003 

2002 

2003 

2002 

2003 

Regression 
Percentage Reflectance 

460 nm 510 nm 560 nm 610 nm 660 nm 760 nm 
Y = 0.10+ 1.11 x 

R2/ SSEy 0.98/0.015 
Y = 0.13 + 1.15 x 

R2/ SSEV 0.99/ 0.008 

Y = 3.42 +0.95 x 3.27 +0.83 x 

R2/ SSEy 0.87/ 0.053 0.91/0.050 
Y = 3.62+1.02 x -3.71 +0.89 x 

R2/ SSEV 0.90/ 0.030 0.91/0.030 
Y = 1.25 + 1.42 x 1.12+ 1.21 x -2.91 + 1.36 x 

R2/ SSEy 0.97/0.018 0.99/0.010 0.93/ 0.030 Vi 
Y = 0.49 + 1.15 x 0.67+ 1.31 x -3.96+ 1.36 x <=> 

R2/ SSEy 0.99/ 0.008 0.99/ 0.009 0.94/ 0.020 
Y = 1.15 + 1.75 x 1.21 + 1.47 x -5.68 + 1.59 x -2.50+ 1.20 x 

R2/ SSEy 0.99/ 0.008 0.98/ 0.010 0.86/ 0.030 0.97/ 0.020 
Y = 0.60+ 1.81 x 0.34 + 1.57 x -5.31 + 1.56 x -1.06+ 1.19 x 

R2/ SSEy 0.99/ 0.006 0.98/ 0.010 0.86/ 0.020 0.97/ 0.010 

Y = 42.54 - 2.85 x 42.05 - 2.27 x 43.46- 1.66 x 44.08- 1.86 x 41.24- 1.73 x 

R2/ SSEy 0.32/ 0.020 0.28/ 0.030 0.11/0.030 0.28/ 0.040 0.36/ 0.040 
Y = 39.82- 2.45 x 38.95 -2.01 x 39.17- 1.25 x 39.48 - 1.47 x 40.00- 1.49 x 

R2/ SSEV 0.28/ 0.020 0.26/ 0.020 0.09/ 0.020 0.23/ 0.030 0.35/ 0.030 

Y = 45.29-3.09 x 44.74 - 2.46 x 46.24- 1.80 x 46.92 - 2.02 x 43.85- 1.88 x -0.73 + 1.08 x 

R2/ SSEy 0.32/ 0.020 0.28/ 0.030 0.11/0.030 0.28/ 0.030 0.37/ 0.040 0.99/ 0.007 

Y = 42.42 - 2.73 x 41.54-2.25 x 42.25 - 1.45 x 42.18- 1.6 x 42.63- 1.65 x -0.90+ 1.10 x 

R2/ SSEV 0.30/ 0.020 0.27/ 0.020 0.10/0.020 0.25/ 0.030 0.37/ 0.030 0.99/ 0.006 
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Table 2. Equation, coefficient of determination (R2), and standard error of y estimate (SEEy) 

for the regressions of percentage reflectance for individual wavelength bands on green leaf 

area index (GLAI) obtained within specific dates and for years 2002 and 2003. 
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Assessment 
Regression 

Percentage Reflectance 
Date 

Regression 
760 nm 810 nm 

23 July 
GLAI 
R2 

SEEV 

5.36 + 0.23 x 
0.89 
0.026 

5.15+0.21 x 
0.88 
0.026 

7 August 
GLAI 
R2 

SEEy 

1.76 +0.12 x 
0.98 

0.006 

1.68 + 0.11 x 
0.98 

0.005 

17 August 
GLAI 
R2 

SEEy 

1.13 + 0.11 x 
0.86 

0.014 

1.06 +0.10 x 
0.86 

0.013 

30 August 
GLAI 
R2 

SEEy 

4.05 +0.18 x 
0.92 
0.019 

3.67 + 0.15 x 
0.94 
0.014 

2002 
GLAI 
R2 

SEEy 

2.48 +0.15 x 
0.82 
0.01 

2.39 +0.14 x 
0.82 
0.01 

14 July 
GLAI 
R2 

SEEy 

2.37 +0.10 x 
0.87 
0.012 

2.39 +0.10 x 
0.90 

0.011 

21 July 
GLAI 
R2 

SEEy 

2.72 +0.12 x 
0.96 

0.008 

2.56 + 0.11 x 
0.95 

0.008 

29 July 
GLAI 
R2 

SEEy 

1.68 + 0.11 x 
0.99 

0.004 

1.63 + 0.10 x 
0.98 

0.004 

4 August 
GLAI 
R2 

SEEy 

2.95 +0.15 x 
0.93 
0.013 

2.78+ 0.13 x 
0.94 
0.011 

14 August 
GLAI 
R2 

SEEy 

3.22 +0.17 x 
0.94 

0.013 

2.81 +0.15 x 
0.94 

0.012 

27 August 
GLAI 
R2 

SEEy 

1.48 +0.12 x 
0.88 
0.014 

1.36 + 0.11 x 
0.88 
0.013 

8 September 
GLAI 
R2 

SEEy 

2.40 +0.15 x 
0.96 

0.009 

2.33 +0.14 x 
0.96 

0.009 

2003 
GLAI 
R2 

SEEy 

1.71+0.11 x 
0.76 

0.006 

1.67 +0.10 x 
0.79 
0.006 
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Table 3. Equation, coefficient of determination (R2), and standard error of y estimate (SEEy) for the regressions of natural-

logarithmic (Ln) transformed percentage reflectance for individual wavelength bands on natural-logarithmic transformed green 

leaf area index (GLAI) obtained within specific dates and for the entire year 2002. 

Assessment 
Regression 

Ln (Percentage Reflectance) 
Date 

Regression 
460 nm 510 nm 560 nm 610 nm 660 nm 

Ln (GLAI) 3.75-2.39 x 4.15-2.40 x 8.54-3.98 x 5.55 - 2.68 x 3.50 - 1.83 x 
23 July R2(%) 94.0 94.3 94.4 94.5 93.5 

SEEy 0.19 0.19 0.31 0.20 0.15 
Ln (GLAI) 3.30-2.76 x 4.02 - 2.99 x 11.34-6.20x 6.19-3.51 x 2.89- 1.89 x 

7 August R2(%) 86.7 86.4 63.2 84.3 85.5 
SEEy 0.34 0.37 1.50 0.48 0.24 
Ln (GLAI) 4.33 -3.87 x 5.52-4.37 x ns 9.75 - 5.74 x 3.84-2.66 x 

17 August R^(%) 91.0 84.3 87.3 94.6 
SEEy 0.38 0.60 0.69 0.20 
Ln (GLAI) 2.99-2.01 x 3.90 -2.24 x 7.86-3.70 x 5.87-2.78 x 3.39- 1.79 x 

30 August R^(%) 90.2 90.1 74.2 87.9 89.1 
SEEy 0.21 0.23 0.69 0.33 0.20 
Ln (GLAI) 2.89 - 2.08 x 3.23 - 2.04 x 5.65 - 2.76 x 4.74-2.41 x 2.93- 1.69 x 

2002 R^(%) 76.9 71.9 44.3 71.7 80.8 

SEEy 0.17 0.19 0.46 0.22 0.12 



www.manaraa.com

Table 4. Equation, coefficient of determination (R2), and standard error of y estimate (SEEy) for the regressions of natural-

logarithmic (Ln) transformed percentage reflectance for individual wavelength bands on green leaf area index (GLAI) obtained 

within specific dates and for the entire year 2003. 
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Assessment 
Regression 

Ln (Percentage Reflectance) 
Date 

Regression 
460 nm 510 nm 560 nm 610 nm 660 nm 

GLAI 4.33- 1.96 x 4.57- 1.96 x 10.66-4.13 x 5.99-2.24 x 5.03- 1.82 x 
14 July R2 0.96 0.94 0.82 0.09 0.95 

SEEy 0.13 0.16 0.60 0.18 0.13 
GLAI 4.59-2.04 x 4.93 - 2.07 x 10.39-4.01 x 6.03 - 2.23 x 4.98- 1.78 x 

21 July R2 0.97 0.97 0.93 0.96 0.97 
SEEy 0.12 0.12 0.36 0.13 0.09 
GLAI 5.64 - 3.26 x 6.40-3.49 x 18.88-8.71 x 8.06-3.75 x 6.03 - 2.62 x 

29 July R2 0.82 0.81 0.74 0.84 0.89 
SEEy 0.49 0.53 1.61 0.52 0.29 
GLAI 5.34 - 2.66 x 5.42-2.53 x 12.45-5.16 x 7.08-2.89 x 5.87 - 2.27 x 

4 August R2 0.95 0.95 0.95 0.96 0.96 
SEEy 0.20 0.18 0.38 0.17 0.14 
GLAI 4.28 - 2.22 x 4.20-2.07 x 9.64-4.15 x 5.58-2.36 x 4.97- 1.99 x 

14 August R2 0.77 0.80 0.77 0.83 0.81 
SEEy 0.38 0.32 0.72 0.34 0.31 
GLAI 4.19-2.83 x 4.08-2.60 x 5.49-2.73 x 5.02 - 2.42 x 

27 August R2 0.74 0.63 0.47 0.76 
SEEy 0.53 0.63 0.92 0.43 

8 
September 

GLAI 3.30- 1.67 x 3.28- 1.53 x 7.80-3.41 x 4.65 - 1.96 x 3.99- 1.56 x 
8 

September 
R2 0.96 0.96 0.87 0.92 0.96 

8 
September 

SEEy 0.10 0.10 0.42 0.17 0.10 
GLAI 4.15-2.03 x 4.17- 1.90 x 7.31 -2.88 x 5.36 - 2.14 x 4.86- 1.88 x 

2003 R2 0.72 0.68 0.45 0.68 0.80 
SEEy 0.14 0.14 0.35 0.16 0.10 
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Table 5. F statistics and P values for the general test approach that compared linear 

regressions of percentage reflectance for individual wavelength bands on GLAI for specific 

assessment dates (individual-assessment-date models) with the overall annual regressions of 

percentage reflectance on GLAI (full-season model) in 2002 and 2003. 

Percentage Reflectance Year F P 

2002 11.27 0.0001 
460 nm 

2003 7.91 0.0008 

2002 12.10 <0.0001 
510 nm 

2003 7.13 0.001 

2002 11.67 <0.0001 
610 nm 

2003 7.97 0.0008 

2002 8.11 0.001 
660 nm 

2003 6.90 0.0018 

2002 6.79 0.003 
760 nm 

2003 19.75 <0.0001 

2002 6.25 0.004 
810 nm 

2003 18.47 <0.0001 
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Table 6. Linear relationships and coefficient of determination among vegetation indices (VI) 

obtained from reflectance from soybean canopies during 2002 and 2003 seasons. The 

different VI are: normalized difference vegetation index (NDVIi), transformed vegetation 

index (TVI,), and green normalized vegetation index (GNDVIi). 

VI Year Regression 

2002 

TVI, 

2003 

2002 
NDVIi 

2003 

0.75 + 0.48 NDVII 0.65 + 0.62 GNDVII 
R2 = 0.99 R2 = 0.99 

0.75 + 0.49 NDVII 0.64 + 0.64 GNDVII, 
R2 = 0.99 R2 = 0.99 

-0.20+ 1.29 GNDVII 
R2 = 0.99 

-0.23 + 1.32 GNDVII 
R2 = 0.99 
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Table 7. Linear relationships and coefficient of determination among vegetation indices (VI) 

obtained from reflectance from soybean canopies during 2002 and 2003 seasons. The 

different VI are: renormalized difference vegetation index (RDVIi), difference vegetation 

index (DVIi), and visible atmospherically resistant index (VARI). 

VI Year Regression 

2002 

DVI, 
2003 

2002 

RDVIi 
2003 

-5.80 + 7.81 RDVI 13.71 + 49.96 VARI 
R2 = 0.97 R2 = 0.90 

-4.06 + 7.41 RDVI 15.52 + 54.37 VARI 
R2 - 0.97 R2 = 0.91 

2.48 + 6.48 VARI 
R2 = 0.95 

2.62 + 7.45 VARI 
R2 = 0.96 
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Table 8. F statistics and P values for the general test approach that compared linear 

regressions of vegetation indices (VI): radiance ratio (RRi), difference vegetation index 

(DVIi), renormalized difference vegetation index (RDVIi), photochemical reflectance index 

(PRI), visible atmospherically resistant index (VARI), normalized difference vegetation 

index (NDVIi), transformed vegetation index (TVIi), and green normalized difference 

vegetation index (GNDVIi) on GLAI or Ln GLAI for specific assessment dates with the 

overall annual regressions of VI's on GLAI or on Ln GLAI in 2002 and 2003. The null 

hypothesis for this test is that the lines are the same. 

VI Year F P 

2002 4.17 0.02 
RRi 

2003 1.17 0.31 

2002 3.38 0.04 
DVIi 

2003 7.21 0.001 

2002 2.36 0.10 
RDVIi GLAI RDVIi GLAI 

2003 2.36 0.10 

2002 4.13 0.02 
PRI 

2003 4.30 0.02 

2002 3.39 0.04 
VARI 

2003 1.67 0.19 

2002 4.37 0.02 
NDVIi 

2003 1.86 0.16 

2002 4.88 0.01 
TVIi Ln GLAI 

2003 2.32 0.10 

2002 2.21 0.12 
GNDVIi 

2003 7.04 0.002 
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Figure 1. Relationships among soybean green leaf area index (GLAI) and percentage 

reflectance from soybean canopies for individual wavelength bands centered at 460, 510, 

560, 610, 660, 710, 760, and 810 nm in 2002. 
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Figure 2. Relationships among soybean green leaf area index (GLAI) and percentage 

reflectance from soybean canopies for individual wavelength bands centered at 460, 510, 

560, 610, 660, 710, 760, and 810 nm in 2003. 
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Figure 3. Relationships among soybean green leaf area index (GLAI) and percentage 

reflectance from soybean canopies for 660 (A), 760 (B) and 810 nm (C) wavelength bands 

obtained throughout 2002 and 2003 seasons. 
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Figure 4. Scatter plots of the relationships among individual vegetation indices (RRi, DVI,, 

NDVIj, TVI,, RDVI,, GNDVIi, PRI, and VARI), soybean green leaf area index (GLAI), and 

plant dry weight (PDW) in 2002 (A) and 2003 (B). 
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Figure 5. Relationships among soybean green leaf area index and vegetation indices: 

radiance ratio 1 (RRi), difference vegetation index 1 (DVIi), and renormalized difference 

vegetation index 1 (RDVIi) throughout 2002 and 2003 growing seasons. 
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Figure 6. Relationships among natural-logarithmic transformed soybean green leaf area index 

(Ln (GLAI)) and vegetation indices: normalized difference vegetation index 1 (NDVIi), 

transformed vegetation index 1 (TVIi), and green normalized difference vegetation index 1 

(GNDVIi) throughout 2002 and 2003 growing seasons. 
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Figure 7. Coefficient of determination (R2) for linear regressions relating different vegetation 

indices: radiance ratio (RR), difference vegetation index (DVI), renormalized difference 

vegetation index (RDVI), normalized difference vegetation index (NDVI), transformed 

vegetation index (TVI), and green normalized vegetation index (GNDVI), to soybean green 

leaf area index (GLAI) and to natural-logarithmic transformed GLAI during 2002 and 2003. 
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CHAPTER 3 

USE OF REMOTE SENSING, GEOGRAPHIC INFORMATION SYSTEMS TO 

ASSESS SOYBEAN YIELD AND SOYBEAN CYST NEMATODE POPULATIONS 

IN SOYBEAN FIELDS 
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2 Abbreviations: GLAI, green leaf area index, VI, vegetation index, 1- Rq, green percentage 

reflectance; RR, red percentage reflectance; RNIR, near infrared percentage reflectance; 

Rinfrared, infrared percentage reflectance; Rw, being W a wavelength band in nanometer (nm) 

from which percentage reflectance is measured; RR, radiance ratio; NDVI, normalized 

difference vegetation index; TVI, transformed vegetation index; PRI, photochemical 

reflectance index; GNDVI, green normalized difference vegetation index; VARI, visible 

atmospherically resistant index; DVI, difference vegetation index; RDVI, renormalized 

difference vegetation index; PDW, plant dry weight; R2, linear coefficient of determination; 

SEEy, standard error of estimate for y. 
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Abstract 

Reflectance data obtained throughout the growing season may be related with soybean 

growth, health, and quantity and quality of yield. Two field experiments with 995 and 613 (2 

x 3 m) quadrats were planted with SCN-susceptible cultivars from 2000 to 2002. Ground-

based reflectance data from soybean canopies were obtained for each quadrat every 4 to 15 

days throughout the growing seasons using a handheld, multispectral radiometer. Soybean 

cyst nematode population densities were assessed for each quadrat prior to planting and after 

harvest of each season. The quality and quantity of the soybean grain produced in each 

quadrat was determined. The relationships among reflectance data, SCN population densities, 

and quantity and quality of soybean grain were investigated using regressions. The best 

relationships (R2 up to 0.8) between reflectance data and quantity of soybean yield occurred 

with reflectance data obtained late August to early September. During this time, the best 

relationships between reflectance data and seed size (R2 up to 0.57) also occurred. 

Relationships among seed size, seed protein content, and seed oil content with percentage 

reflectance data varied between experiments and among growing seasons. The best 

relationships between seed protein content and percentage reflectance data (R2 up to 0.53) 

occurred with reflectance data from early August to mid September. There was not a specific 

period in which the best relationship between seed oil content and percentage reflectance 

data occurred, and the maximum R2 value observed for these relationships was 0.49. The 

variation in SCN population densities was best described by the variation in percentage 

reflectance data obtained very early or very late in the season. It has yet to be determined 

how reflectance from soil early in the season and/or from the senescing soybean foliage and 

soil late in the season are related to SCN population densities. 
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Introduction 

Soybean, Glycine max (L.) Merr., is a major source of vegetable oil produced 

worldwide (Wilcox, 2004), and soybean cyst nematode (SCN), Heterodera glycines 

Ichinohe, is one of the principal causes of soybean yield losses in the world. Economic losses 

caused by SCN surpass US$ 1 billion in the United States annually (Wrather et al., 2001), 

and yield reductions can occur even in the absence of noticeable symptoms (Niblack et al., 

1991; Wang et al., 2003; Young, 1996). The economic importance of soybean crop, the large 

amount of agricultural land occupied with this crop throughout the world (Wilcox, 2004), 

and the difficulties of visually determining the impact of SCN on soybean yield makes this 

pathosystem appropriate for study by means of remote sensing technologies. 

Precision agriculture pre-supposes that any yield-limiting factor must be detected 

early and that viable control practice can be deployed before yield losses exceed an economic 

threshold (Seelan et al., 2003). Optimizing the use of agronomic inputs in time and space, 

precision agriculture needs tools and techniques that facilitate site-specific management of 

crops (Pinter et al., 2003; Seelan et al., 2003). Remote sensing technologies that measure the 

percentage of sunlight reflected from soybean canopies may provide a means to obtain timely 

and accurate disease diagnoses and the means to differentiate and quantify plant stresses. 

Furthermore, reflectance measurements obtained from soybean canopies at different 

wavelength bands may indicate the presence of a plant stress, even when the stress cannot be 

visually detected. Geographic information systems (GIS) allow displaying geo-referenced 

variables into maps. In this way, geo-referenced remote sensing data can be processed 

through GIS to provide spatial information about crop conditions that may be effective to 

site-specific management of crops. Additionally, mapping reflectance data obtained from 

soybean canopies may be used to provide early estimates of soybean yield. 

To be incorporated in the decision-making process to optimize agricultural, 

economical, and ecological results, precision farming demands high-quality remote sensing 
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data to be obtained in a timely fashion and to be related to plant physiological status and crop 

yield (Pinter et al., 2003; Seelan et al., 2003). Ground-based remote sensing can provide the 

high-resolution data that are required to implement site-specific management programs 

required for precision farming. If remote sensing is to be automatically incorporated to the 

decision-making process the data collected need to remain stable across different assessment 

dates and be strongly related to plant growth and yield. 

Jackson published a review on use of remote sensing to detect plant stress (Jackson, 

1986), and several other researchers have addressed the use of these technologies to detect 

biotic (Carver and Griffiths, 1981; Gausman et al., 1975; Nutter, 1989; Nutter et al., 1990) 

and abiotic (Adams et al., 2000; Carver and Griffiths, 1981; Dale et al., 1982; Hansen and 

Schjoerring, 2003; Penuelas, 1998) plant stresses. Advantageously, these methods of 

assessing plant-health status can provide fast and reliable biological information with 

minimal disturbance of the crop (Nutter, 1989; Nutter et al., 1990). However, differences in 

atmospheric conditions (Liu and Huete, 1995; Xiao et al., 2003) and in soil characteristics 

(Gilabert et al., 2002; Haverkort et al., 1991; Huete, 1988; Huete et al., 1985; Liu and Huete, 

1995; Rondeaux et al., 1996; Weidong et al., 2002) can affect the quality of the remote 

sensing data. Thus, different authors expressed concern about the limitations of remote 

sensing techniques in agriculture (Tucker, 1979; Wiegand et al., 1972). 

Knowledge of the potential limitations of remote sensing should provide the 

framework to maximize its usefulness. Radiometers record reflectance data at specific 

wavelength bands and widths. These specifications can restrict the utility of the reflectance 

data since different wavelength bands and widths are affected differently by characteristics of 

the atmosphere, soil, and vegetation (Gitelson et al., 2002; Tucker, 1979). Height of the 

sensors, canopy type (Daughtry et al., 1982; Guan and Nutter, 2001), incident radiation, 

presence of water on the leaves (Guan and Nutter, 2001), and cultural practices (Kollenkark 

et al., 1982) influence the quality of ground-based radiometer data. 
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Any plant stress causes color and/or morphological changes in plant parts (Jackson, 

1986). Infection of soybean roots by SCN causes a reduction in the rate of aboveground plant 

growth that can result in a reduction in the amount of green leaf area. The amount of green 

leaf tissue per unit of ground area is known as green leaf area index (GLAI) (Campbell and 

Madden, 1990). This index can be influenced by one or more plant stresses and often is 

highly related to yield (Guan and Nutter, 2000). To establish the relationships between yield 

and GLAI and/or the change in GLAI with respect to time, the critical stages of crop 

development and frequency of data collection throughout the growing season need to be 

determined. Estimates of GLAI obtained during pod elongation and seed filling in soybean 

plants provided an accurate estimate of yield losses in determinate and indeterminate soybean 

cultivars (Fehr et al., 1981). Maximum soybean yields were achieved when soybean plants 

reached GLAI of 3.5 - 4.0 during pod formation and pod elongation (Board, 2004; Board et 

al., 1997). The relationships between soybean growth, light interception, and yield have been 

previously demonstrated (Adcock et al., 1990; Batista and Rudorff, 1990; Board, 2004), and 

spectral data have been used to predict developmental stage of soybean (Badhwar, 1985; 

Henderson and Badhwar, 1984). However, there is a lack of information about the variability 

and reliability associated with using ground-based remote sensing data to estimate 

quantitative and qualitative aspects of soybean yield throughout a season. 

Usually, radiometers measure reflectance from a target object at several different 

wavelength bands. These measurements of reflectance can be correlated to some 

characteristics of the target object (Perry and Lautenschlager, 1984). However, the 

relationships among individual wavelength bands and the target may differ from each other 

(Holben et al., 1980). Thus, to assess various characteristics of plant canopies, information 

contained within single wavelength bands can be used alone or data from different 

wavelength bands can be empirically combined in different ways to calculate vegetation 

indices (VI). These indices may be correlated to canopy characteristics, such as leaf area 
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index, fractional vegetation cover, biomass, and other vegetative conditions (Carlson and 

Ripley, 1997; Perry and Lautenschlager, 1984). Ratios of reflectance and differences in 

reflectance between two different wavelength bands form the two major categories of 

indices, although there are other ways of calculating VI's. 

Different VI's may have specific relationships with individual canopy characteristics. 

Soybean leaf area index had a positive linear relationship with the radiance ratio (545 nm/ 

655 nm) and with near infrared reflectance (750 nm) (Kanemasu, 1974). Infrared-to-red 

radiance ratios were found to have a positive linear relationship with soybean GLAI, soybean 

fresh biomass, and soybean yield (Batista and Rudorff, 1990; Holben et al., 1980; Kanemasu, 

1974). Red radiance was found to be linearly and negatively related to soybean GLAI 

(Holben et al., 1980; Kanemasu, 1974). However, quadratic equations best described the 

relationships between soybean dry biomass and soybean leaf area index with red and near 

infrared reflectance, with near infrared-red radiance ratio, and with a transformed greenness 

vegetation index (Kollenkark et al., 1982). 

Positive, non-linear relationships between the normalized difference vegetation index 

(NDVI), that is the ratio between the difference and the sum of near infrared and red 

radiances, and soybean GLAI were found to reach a saturation point at GLAI values between 

2 and 3 (Kollenkark et al., 1982). This same VI obtained from soybean canopies during pod 

elongation and seed filling were positively correlated with soybean grain yield (Ma et al., 

1996). 

The difference vegetation index (DVI), that is the difference between infrared and red 

radiances, and the transformed vegetation index (TVI), that is a mathematical transformation 

of NDVI, were related to grass biomass (Tucker, 1979). The visible atmospheric resistant 

index (VARI) minimized atmospheric effects in the estimation of vegetation fraction of 

wheat and corn (Gitelson et al., 2002). The green normalized difference vegetation index 

(GNDVI), a ratio between the difference and the sum of near infrared and green radiances, 
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accurately assessed chlorophyll content of plant canopies (Gitelson et al., 1996) and 

predicted com yield when assessments were made during midgrain filling (Shanahan et al., 

2001). The photochemical reflectance index (PRI), which is the ratio between the difference 

and the sum of radiances at 531 nm and 570 nm, has been shown to be correlated with 

radiation use efficiency of several plant species (Gamon et al., 1997). 

Distinct VI's are considered equivalent if they provide the same basis for decisions to 

be made (Perry and Lautenschlager, 1984). However, few evaluations were done to check 

equivalence among VI's used to assess soybean growth and yield. 

The main goals of this study were to evaluate the ability of predicting soybean yield 

using reflectance from different wavelength bands and from different vegetation indices and 

to study the relationships between of reflectance data and SCN population densities in 

soybean fields under continuous soybean cultivation. 

Material and Methods 

The research was conducted from 2000 to 2002 in fields with a history of occurrence 

of SCN. In the first year, one field experiment located at the Iowa State University Woodruff 

Farm, Ames, IA, was planted with a SCN-susceptible soybean cultivar, AgriPro 1995. In the 

two subsequent years, a field experiment located at the Iowa State University Bruner Farm 

was planted in addition to the experiment at the Woodruff Farm. A SCN-susceptible cultivar, 

AgriPro 1702 RR, was planted in both fields in 2001 and 2002. In the three seasons, a row 

spacing of 75 cm was used and 30 seeds were planted per meter. 

A grid of 995 2 X 3 m quadrats was established in the Woodruff Farm experiment, 

and a grid of 613 similarly sized quadrats was established in the Bruner Farm experiment. 

Latitude and longitude values were determined for each quadrat. The exact coordinates of the 

quadrats were maintained in successive seasons using a Trimble Differential GPS Unit 

(Trimble, Sunnyvale, CA). Each quadrat had four soybean rows 2 m in length. At harvest, the 
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two central rows of each quadrat were harvested. The soybean grain was dried at 27 C, then 

seed moisture and oil and protein content were determined using a Tecator Grain Analyzer 

model INFRATEC 1229 (TECATOR AB, Hoganas, Sweden) in 2000 and 2001. In 2002, 

seed moisture was determined by a Dole 400 grain moisture tester (Eaton Corp., Carol 

Stream, IL), and seed oil and protein analyses were done at the Iowa State University Grain 

Quality Laboratory using a similar grain analyzer (INFRATEC 1229). Quantity of yield per 

quadrat was determined and standardized to moisture content of 0.13 g H2O g"1 during the 

experiments. To assess seed size, weight of 100 seeds was obtained by arbitrarily selecting 

and weighing 100 seeds per quadrat. 

Percentage reflectance from soybean canopies was measured throughout the growing 

seasons. Percentage reflectance is the percentage of incident sunlight that is reflected by a 

target object. Within each assessment date, two multispectral, hand-held radiometers (model 

MRS-87, CROPSCAN, Inc., Rochester, MN) were used to measure percentage reflectance 

from a sensor height of 3 m above the ground. At this height, percentage reflectance of 

sunlight from soybean canopies was obtained from a circular area (1.5-m diameter) located at 

the center of each quadrat. Percentage reflectance was measured at eight wavelength bands 

with midpoint values of 460, 510, 560, 610, 660, 710, 760, and 810 nm. The bandwidths for 

these wavelength bands were of 27.0, 32.3, 25.0, 26.9, 25.5, 32.9, 28.0, and 31.7 nm, 

respectively. Percentage reflectance measurements within each quadrat obtained from both 

radiometers were averaged. Assessments were made under cloudless sky conditions between 

1100 and 1500 hours CST (Guan and Nutter, 2001). Planting date, assessment dates, and 

harvest date for the three seasons are presented in Table 1. At each assessment date, five 

quadrats were arbitrarily selected from which soybean growth stage was assessed. 

During the growing season, each quadrat in the fields was visually inspected every 

seven to fifteen days, and plants showing disease symptoms were identified. Disease 

intensity per quadrat was recorded as incidence and/or severity. Incidence and severity were 
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defined as the proportion of the total number of plants that were expressing disease 

symptoms and the proportion of plant tissue presenting symptoms of the diseases, 

respectively. When it was necessary, plant tissue was sampled and observed under the 

microscope for identification of the pathogens. Quadrats showing iron deficiency chlorosis 

were rated at the Bruner Farm experiment during the 2002 growing season. The typical 

symptoms of iron deficiency chlorosis on soybean leaves are characterized by yellowing of 

interveinal areas of young leaves (McGlamery and Curran, 1989). Iron deficiency chlorosis 

symptoms were rated using a 0 to 2 scale where 0 is the absence of symptoms in plants 

within a quadrat, 1 is the presence of iron deficiency chlorosis symptoms in at least one plant 

within a quadrat, and 2 is the occurrence of foliar symptoms of iron deficiency chlorosis 

associated with stunting of plants within a quadrat. 

Since a particular radiometer model measures reflectance at specific band locations 

and bandwidths, some of the VI's used in this study are close approximations of previously 

published indices. The reflectance (R) at different wavelength bands (R subscript) was used 

to obtain the VI's evaluated in this study. The VI's were: 

1- Green, RG = (R510 + RseoV 2 

2- Red, RR = (RÔIO + RÔ6Û)/2 

3- Near Infrared, NIR = (R760 + Rsio)/2 

4- Radiance Ratio, RR = RNIR/RR (Tucker, 1979) 

5- Normalized Difference Vegetation Index NDVI = (RNIR - RR)/(RNIR + RR) (Holben et al., 

1980) 

6- Transformed Vegetation Index, TVI = (NDVI, + 0.5)°5 (Tucker, 1979) 

7- Photochemical Reflectance Index, PRI = (R510 - R^o)/(R^o + R570) (Gamon et al., 1997) 

8- Green Normalized Difference Vegetation Index, GNDVI = (RNIR - RG)/(RNIR + RG) 

(Gitelson et al., 1996) 
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9- Visible Atmospherically Resistant Index, VARI = (R560 - R^eoVCRseo + RÔÔO - Rteo) 

(Gitelson et al., 2002) 

10- Difference Vegetation Index, DVI = (RNIR - RR) (Tucker, 1979) 

11- Renormalized Difference Vegetation Index, RDVI = (NDVIi * DVI1)0 5 (Roujean and 

Breon, 1995) 

Soybean cyst nematode population densities were determined immediately before 

planting and after harvest in each experiment each year. Within each quadrat, six soil cores 

(2 cm diameter and 15 - 20 cm deep) were collected in a zigzag pattern, 10 cm apart, from 

the two central rows, and the cores were bulked. SCN cysts were extracted from 100 cm3 sub 

samples using a semi-automatic elutriator (Byrd et al., 1976). Using a drill press with a shaft-

mounted rubber stopper rotating at 2340 rpm, SCN eggs were extracted from the cysts by 

crushing the cysts on a 250-pm-pore diameter sieve (Faghihi and Ferris, 2000). The eggs 

were recovered on a 25-p.m-pore diameter sieve that was mounted under a 75-p.m-pore 

diameter sieve. The extracted SCN eggs were stained with acid fuchsin (Niblack et al., 1993), 

eggs were counted under a dissecting microscope at 5Ox magnification, and the resultant egg 

count was used to calculate the number of eggs present in a 100 cm3 sample of soil. 

Maps of the SCN population densities, canopy reflectance, and soybean yield were 

created using ArcGIS 8.0 (ESRI, Redlands, CA). Regression analyses were performed to 

quantify describe the relationships among SCN population densities, soybean yield, and 

percentage reflectance data from each soybean quadrat canopy (individual wavelength bands 

and vegetation indices) using SAS (SAS Institute Inc. Cary, NC), S-Plus (Mathsoft, Inc., 

Cambridge, MA), and Sigma Plot (SPSS, Inc., Chicago, IL). For the regressions of 

percentage reflectance data on SCN population densities, logarithmic transformations (logio) 

of SCN population densities were done. The coefficients of determination for the 

relationships among percentage reflectance data, soybean yield quantity and quality, and 
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SCN population densities reported in our results were obtained from regressions that had P 

values equal to or lower than 0.05. 

Results 

There were few foliar diseases observed on soybean plants in both fields from 2000 to 

2002. At the Woodruff Farm experiment, Cercospora sp. and Septoria sp. were observed 

infecting soybean plants at low disease incidence (< 4.0%) and severity (< 6.0%) levels. A 

general yellowing of the leaves was observed across the Woodruff Farm experimental field 

during drought periods; however, plants recovered after rain. At the Bruner Farm experiment, 

Cercospora sp. was observed infecting soybean plants at low incidence (-3%) and severity 

(< 2%) levels. Typical symptoms of iron deficiency chlorosis on leaves were observed at the 

northwestern and northern areas of the Bruner Farm experiment in both years. Coincidently, 

the SCN population densities were the greatest in these areas where symptoms of iron 

deficiency chlorosis were visible in soybean plants at the Bruner Farm experiment (data not 

shown). 

Percentage reflectance from soybean canopies at 760 nm and at 810 nm had the best 

linear relationships with soybean yield at the Woodruff Farm experiment in 2000 and for 

both the Woodruff and Bruner Farm experiments in 2001 and 2002. For these same 

experiments, the relationships between percentage reflectance at 710 nm and yield had the 

lowest coefficients of determination (R2). Among the VI's, NIR, RR, DVI, NDVI, TVI, and 

GNDVI had better linear relationships with soybean yield for all seasons and locations than 

RG, RR, PRI, and VARI. For each experiment, coefficients of determination for the best 

relationships among quantity of yield, percentage reflectance for individual wavelength 

bands, and specific VI in each season are shown (Tables 2 and 3). 

Coefficients of determination for the linear relationships between the vegetation 

indices NIR, RR, RDVI, and GNDVI and yield throughout the seasons are shown for both 
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experiments (Figs. 1 and 2). In general, R2 values tended to increase from the beginning of 

the season and reached a maximum value at late August or early September in both 

experiments except at the Woodruff Farm experiment in 2002, where lodging of soybean 

plants occurred after mid July. 

Throughout growing seasons, from early season to late August / early September, 

relationships between reflectance and yield deteriorated in some periods. However in two 

instances, at the Bruner Farm experiment in 2001 and at the Woodruff Farm experiment in 

2002, deterioration of the relationships between yield and reflectance was not similar among 

different indices. In these two instances, the GNDVI-yield relationships were less affected 

than other VI-yield relationships (Figs. 1 and 2). 

Spatial similarities between yield and reflectance can be presented in maps if 

geographic coordinates of quadrats from where reflectance and yield data are obtained are 

known. Yield maps and maps of the vegetation indices with the best linear relationships with 

yield at the best assessment date in each season for the Woodruff and Bruner Farm 

experiments are shown in Figs. 3, 4, 5, 6, and 7. 

The relationships among the seed protein content, seed oil content, seed size, and 

percentage reflectance were assessed at both experimental fields throughout the seasons. The 

best relationships between percentage reflectance data and seed protein content occurred for 

both the Woodruff and Bruner Farm experiments during the 2001 growing season (Fig. 8). 

The relationships between seed protein content and percentage reflectance data had the 

highest R2 with reflectance data obtained between the months of August and September (Fig. 

8). Vegetation indices had better relationships with seed protein content than single-

wavelength-band reflectance data (Fig. 8). Variation of NDVI and TVI explained 21.2% of 

the variation in seed protein content in the Woodruff Farm experiment with reflectance data 

from 9 August 2000 (Fig. 8). The coefficient of determination between GNDVI and seed 

protein content was 0.31 in the Woodruff Farm experiment on 7 August 2001. Relationships 
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among NDVI, TVI, and seed protein content had an R2 of 0.53 in the Bruner Farm 

experiment with reflectance data from 11 September 2001 (Fig. 8). 

In 2002, the relationships between reflectance and seed protein were variable among 

different assessment dates, and the variation in NDVI and TVI on 29 August explained 

14.6% of the variation in soybean protein in the Woodruff Farm experiment (Fig. 8). 

Variation on reflectance at 710 nm on 28 June explained 18.9% of the variation in soybean 

protein (Fig. 8). Maps of percentage reflectance data and seed protein content were made for 

the date in which the relationship between percentage reflectance data and seed protein 

content had the highest R2 (Figs. 9 and 10). 

The relationships between seed oil content and percentage reflectance data among 

different assessment dates in the Woodruff Farm experiment from 2000 to 2002 were 

variable. For this experiment, the best relationships between seed oil content and percentage 

reflectance had R2 lower than 0.1 in 2000 and 2002, and a R2 of 0.27 was obtained for 

reflectance data from 15 June 2002 (data not shown). For the Bruner Farm experiment, the 

best relationships between seed oil content and reflectance had R2 of 0.49 and 0.48 for 

percentage reflectance at 660 nm and RR, respectively, from measurements of reflectance 

obtained on 4 September 2001 (Fig. 11). During the 2002 growing season, significant 

relationships between seed oil content and reflectance were observed earlier in the season 

than in 2001, and reflectance at 710 nm measured 28 June presented the highest R2, 0.26 

(Fig. 11). Maps of seed-oil content and percentage reflectance data were made for the Bruner 

Farm experiment for dates when the best relationships between reflectance and seed oil were 

determined (Fig. 12). 

The highest R2 between seed size and percentage reflectance data occurred for 

measurements of reflectance obtained late in soybean growing season, late August to early 

September, in both experiments and seasons (Fig. 13). In 2001 and 2002, R2 values were 

higher for the Woodruff Farm experiment than for the Bruner Farm experiment (Fig 13). At 
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the Woodruff Farm experiment, the variation of seed size was best described by the variation 

in GNDVI obtained at 8 September 2000, 12 September 2001, and 29 July 2002 with R2 of 

0.58, 0.46, and 0.48, respectively (Fig. 13). At the Bruner Farm experiment, the relationships 

among DVI, TVI, and seed size had R2 of 0.36 and 0.40 for measurements of reflectance 

obtained on 4 September 2001 and on 12 September 2002, respectively. For this same 

experiment, the relationships between seed size and percentage reflectance for the 710 nm 

wavelength band measured on 11 September 2001 had R2 of 0.37. Maps of percentage 

reflectance data obtained for the assessment date in which the relationships between 

percentage reflectance data and seed size had the highest R2 were made for the Woodruff and 

Bruner Farm experiments (Figs. 14 and 15). 

For the two experiments, percentage reflectance data had better relationships with 

SCN densities obtained at planting than at harvest in four out of five experimental location-

year combinations. Most of the best relationships between percentage reflectance data from 

soybean canopies and SCN population densities at planting were found very early or very 

late in the growing seasons. For the Woodruff Farm experiment, the best relationships were 

found early in the season for percentage reflectance at 810 nm (R2 = 0.27 on 8 June 2001) 

and for the NIR index (R2 = 0.25 on 30 May 2002). However, for this same experiment, the 

best linear relationships between SCN population densities at planting and percentage 

reflectance data were obtained for the percentage reflectance at 810 nm during mid season 

(R2 = 0.16 on 13 July 2000) (Fig. 16 and 18). For the Bruner Farm experiment, the best 

relationships between percentage reflectance data and SCN population densities at planting 

occurred late in the season for RR (R2 - 0.13 on 28 August 2001) and for NDVI and TVI (R2 

= 0.27 on 12 September 2002) (Figs 17 and 19). 

At the Woodruff Farm experiment, reflectance data that best described the variation 

in SCN population densities at harvest were: 710 nm (R2 = 0.19 on 13 July 2000), 510 nm 

(R2 = 0.11 on 8 June 2001), and DVI (R2 = 0.23 on 15 June 2002) (data not shown). At the 
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Bruner Farm experiment, the highest R2 obtained for the relationships between percentage 

reflectance data and SCN population density at harvest was obtained for the RR index (R2 = 

0.12 on 11 September 2002) (data not shown). 

Discussion 

The relationships between soybean yield and percentage reflectance data from 

soybean canopies improved for measurements of reflectance obtained from May to late 

August / early September, and deteriorated when reflectance was measured after this period. 

The only exception to this yield-reflectance-relationship pattern was observed at the 

Woodruff Farm experiment in 2002. During this year, the relationships between yield and 

percentage reflectance data obtained from mid July to early August 2002 deteriorated. 

Relationships between measurements of reflectance data obtained late August / early 

September 2000 and yield improved. However, the reflectance-yield relationships were 

weaker in the Woodruff Farm experiment in 2002 than the ones observed in previous seasons 

for the experiment. In this experiment, it was observed that the soybean plants lodged 

beginning early July 2002. For other crops, lodging negatively affected the relationships 

between percentage reflectance of infrared wavelength bands and GLAI (Haverkort et al., 

1991), and GLAI can be highly related to yield (Guan and Nutter, 2000). Since infrared 

reflectance is part of most VI evaluated in our study, the relationships among those indices, 

GLAI, and yield probably deteriorated for the Woodruff Farm experiment after mid July 

2002. It is important to note that the GNDVI that is calculated from the green and near 

infrared wavelength bands was less affected in the ability to predict yield when lodging 

occurred than the other indices. 

The relationships between grain yield and reflectance increased for measurements of 

reflectance obtained from early season to late August. However, in some assessments of 

reflectance during this period, the relationships deteriorated without any identifiable reason. 



www.manaraa.com

83 

Future research should focus on identifying factors that negatively affect the usefulness of 

percentage reflectance data to predict soybean yield. 

The best relationships between reflectance data and yield were obtained in 2000. 

However, the results obtained from 2001 and 2002 may not be directly comparable to results 

obtained in 2000 because the soybean cultivar grown in 2000 was different from the cultivar 

grown in 2001 and 2002. However, the trends observed here showed that for the two 

cultivars planted in the two different experimental fields, the same phenomenon involving 

the development of relationships between percentage reflectance data and yield was 

observed. Additional experiments under different conditions, such as different row spacing 

and soil backgrounds, are important and will need to be conducted to produce results broadly 

applicable. Nonetheless, one major outcome our study is that ground-based percentage 

reflectance data can be used to predict soybean yield of a soybean field one month before 

harvest. Such information will be valuable for farmers because they will be able to identify 

yield limiting factors in their fields prior harvest. These yield predictive capabilities also will 

be valuable for making marketing decisions concerning sale of soybean grain. 

In addition to predicting quantity of yield, ground-based remote sensing measuring 

percentage reflectance is also adequate to assess soybean quality traits, such as protein and, 

oil content, and seed size. The best relationships between percentage reflectance data and 

seed protein were obtained for reflectance data obtained in the period between early August 

and early September, although the magnitude of the relationships varied in place and time. In 

contrast, it was not possible to identify a specific period for measuring reflectance from 

soybean canopies where the relationships between percentage reflectance data and seed oil 

content were the best; however it was possible to verify that the lowest seed oil content 

occurred in the same areas SCN population densities were the highest in the Bruner Farm 

experiment. At these same areas, iron deficiency chlorosis also was observed. 
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The relationships between percentage reflectance data and seed size were the best for 

measurements of reflectance obtained late in soybean seasons, late August /early September, 

in both experimental fields from 2000 to 2002. This period coincided with the best period for 

predicting yield using reflectance data. Then, percentage reflectance data obtained during the 

months of August and September showed to be very important to predict quantity and quality 

of soybean yield. 

Initial SCN population densities and reflectance data were best related when 

reflectance data was obtained very early or very late in the season. Soil has a greater 

influence on the total reflectance obtained for each quadrat early in the soybean season than 

in the middle of the season, when foliage completely covers the surface area of the quadrats. 

Thus, the relationships between reflectance and SCN population densities at planting 

observed at the Woodruff Farm experiment may somewhat represent the relationships 

between SCN populations and soil characteristics. Early senescence of SCN-infected 

soybean plants can explain the relationships between reflectance measurements obtained late 

in the season and SCN population densities measured at planting. In this case, besides level 

of SCN infection, i.e. multiple infections that can occur in soybean roots, time of infection 

can be a factor affecting early senescence of soybean plants. 

It was not possible to identify the type of reflectance data that had the best 

relationship with SCN population densities. The percentage reflectance for individual 

wavelength bands and VI that best described the variation in SCN population densities varied 

between experimental fields. While percentage reflectance in the near infrared spectrum (769 

and 810 nm) had the best relationships with SCN population densities at planting for the 

Woodruff Farm experiment, RR and NDVI had the best relationships with SCN population 

densities at planting for the Bruner Farm experiment. Soybean plants infected by SCN may 

senesce early and this difference in plant development may explain the improvement in the 

SCN-reflectance relationships at the end of the season. Thus, the effects SCN can have on 
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soybean growth also could affect reflectance data, and these possible effects should be 

considered in addition to the effects that soil background may have on percentage reflectance 

data when the best relationships between percentage reflectance data and SCN population 

densities at planting were found at the end of the growing season. 

We did not find any single wavelength band or VI to be the best for assessing SCN 

population densities at planting or soybean yield quantity and quality. The wavelength bands 

and VI's that provide the best relationships with SCN population densities at planting and 

yield quantity or quality varied between the two experimental fields and/or among growing 

seasons. However, some of the relationships among different types of reflectance data, SCN 

population densities at planting, and soybean yield had similar pattern of variation within 

seasons. These similarities may be explained by the fact that most of the indices were 

mathematical combinations of percent reflectance of wavelength bands in the visible 

spectrum (most of times red or green) and percentage reflectance of wavelength bands in the 

infrared spectra. The red and green wavelength bands were highly related to each other, and 

the infrared wavelength bands were highly related also. Thus, it can be expected the DVI, 

NDVI, TVI, RDVI, and GNDVI had similar reflectance properties. These similarities among 

wavelength bands and VI's show the potential of having estimation of soybean yield quantity 

and quality and SCN population densities using different types of percentage reflectance 

data. GIS tools can be used to map geo-referenced percentage reflectance, soybean yield 

quantity and quality, and SCN population densities at planting and harvest data. These maps 

may provide useful information for site-specific management of the crop, for early prediction 

of soybean yield and for describing the effects plant stresses may have on soybean yield. 
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percentage reflectance data for the Woodruff Farm experiment. 

Figure 19. Maps of SCN population densities (SCN eggs 100 cm"3 soil"1) at planting (Pi), 

logio (Pi +1), and percentage reflectance data as radiance ratio (RR) and 

normalized difference vegetation index (NOVI) for the assessment dates within the 

2001 and 2002 seasons that had the highest linear relationships between logio (Pi + 

1) and reflectance data for the Bruner Farm experiment. 



www.manaraa.com

95 

Table 1. Dates of planting, reflectance assessments, and harvest at Woodruff and Bruner 

Farm experiments in 2000, 2001, and 2002. 

2000 2001 2002 

Woodruff Woodruff Bruner Woodruff Bruner 

Planting 05/23 05/29 05/29 05/21 05/21 

05/20 05/15 05/10 05/30f 05/31| 

06/15 06/08 05/14 06/15 06/16 

06/29 06/15 06/07 06/29 06/28 

07/13 06/25 06/16 07/12 07/08 

08/02 07/09 07/10 07/20 07/21 

Reflectance 08/09 07/26 07/23 08/01 07/25 

assessments 08/25 08/06 08/02 08/14 08/02 

09/08 08/17 08/16 08/29 08/16 

09/14 08/29 08/28 09/11 08/26 

09/05 09/04 09/12 

09/12 09/11 

09/26 09/25 

Harvest 09/26 10/01 10/03 09/22 09/22 

t On these dates, the reflectance measurements were obtained from just one radiometer. 
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Table 2. Coefficient of determination (R2) of the linear relationships between percentage reflectance for individual wavelength 

bands and yield for the assessment date within a season in which the best relationships between remote sensing data and yield 

were found for the Woodruff and Bruner Farm experiments from 2000 to 2002. 

Farm Year 
Assessment Percentage Reflectance 

Farm Year 
date 

R460I* R510 R560 RélO R<560 R710 R?60 RSIO 

Woodruff 2000 25 Aug 0.24$ 0.44 0.09 0.53 0.57 0.04 0.78 0.80 

2001 05 Sept 0.43 0.32 NS 0.17 0.32 0.09 0.72 0.73 

2002 20 July 0.06 NS NS 0.07 NS 0.11 0.54 0.54 

Bruner 2001 28 Aug 0.15 0.28 0.24 0.38 0.46 0.07 0.58 0.61 

2002 16 Aug NS 0.07 0.30 0.39 0.28 0.05 0.53 0.56 

t Rx, percentage reflectance for the x wavelength band. 
X All the R2 values were significant at 0.05 level of probability. 
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Table 3. Coefficient of determination (R2) of the linear relationships between vegetation indices and yield for the assessment date 

within a season in which the best relationships between remote sensing data and yield were found for the Woodruff and Bruner 

Farm experiments from 2000 to 2002. 

Farm Year 
Assessment 

date 

Vegetation Indexf 

RG RR NIR RR DVI NO VI TVI RDVI PRI GNDVI VARI 

Woodruff 2000 25 Aug 0.23$ 0.57 0.79 0.82 0.80 0.69 0.68 0.78 0.29 0.74 0.58 

2001 05 Sept 0.05 0.26 0.73 0.59 0.71 0.56 0.56 0.67 0.49 0.69 0.49 

2002 20 July NS 0.04 0.54 0.46 0.54 0.45 0.44 0.54 NS 0.50 NS 

Bruner 2001 28 Aug 0.28 0.44 0.60 0.67 0.64 0.65 0.65 0.67 NS 0.66 0.31 

2002 16 Aug 0.27 0.43 0.55 0.66 0.58 0.63 0.62 0.61 0.04 0.69 0.07 

t Vegetation indices: RG, green reflectance, RR, red reflectance, NIR, near infrared reflectance; RR, radiance ratio; DVI, difference 
vegetation index, NDVI, normalized difference vegetation index; TVI, transformed vegetation index; RDVI, renormalized 
difference vegetation index; PRI, photochemical reflectance index; GNDVI, green normalized difference vegetation index; VARI, 
visible atmospherically resistant index. 
$ all R2 values were significant at 0.05 level of probability. 
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Figure 2 - Variation in the linear correlation coefficient (R2) of the relationships between 
yield and vegetation indices at Bruner Farm during the growing seasons of 2001 and 2002. 
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Figure 3. Maps of soybean yield, radiance ratio (RR), and near infrared (NIR) maps obtained on 25 August 2000 for the Woodruff 

Farm experiment. 
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Figure 4. Maps of soybean yield, green normalized difference vegetation index (GNDVI), and near infrared (NIR) maps obtained 

on 5 September 2001 for the Woodruff Farm experiment. 
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Figure 5. Maps of soybean yield, radiance ratio (RR), and difference vegetation index (DVI) maps obtained on 20 July 2002 for 

the Woodruff Farm experiment. 
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Figure 6. Maps of soybean yield, radiance ratio (RR), and near infrared (NIR) maps obtained on 28 August 2001 for the Bruner 

Farm experiment. 
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Figure 7. Maps of soybean yield, radiance ratio (RR), and green normalized difference vegetation index (GNDVI) maps obtained 

on 16 August 2002 for the Bruner Farm experiment. 
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Figure 8. Coefficients of determination (R2) of the relationships between soybean seed 

protein content and reflectance data from soybean canopies as narrow wavelength bands (A) 

and as vegetation indices (B) obtained at different assessment dates within growing seasons 

for the Woodruff and Bruner Farm experiments from 2000 to 2002. 
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Figure 9. Maps of seed protein (from 2000 to 2002), Normalized Difference Vegetation 

Index (NDVI), Transformed Vegetation Index (TVI), and Green Reflectance (RG), for the 

assessment dates within the 2000, 2001, and 2002 seasons that had the highest linear 

relationships between seed protein and reflectance data for the Woodruff Farm experiment. 
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Figure 10. Maps of seed protein (2001) and Transformed Vegetation Index (TVI) for the assessment dates within the 2001 season 

that had the highest linear relationships between seed protein and reflectance data for the Bruner Farm experiment. 
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Figure 11. Coefficients of determination for the relationships between seed oil content and 

remote sensing data from soybean canopies as percentage reflectance of narrow wavelength 

bands and vegetation indices obtained at different assessment dates within growing seasons 

for the Bruner Farm experiment during 2001 and 2002. 
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Figure 12. Maps of seed oil content (2001 and 2002), transformed vegetation index (TVI), and percentage reflectance at 710 nm 

for the assessment dates within the 2001 and 2002 seasons that had the highest linear relationships between seed oil content and 

reflectance data for the Bruner Farm experiment. 
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Figure 13. Coefficients of determination (R2) of the relationships between 100-seed weight 

and remote sensing data from soybean canopies as percentage reflectance of narrow 

wavelength bands (A) and as vegetation indices (B) obtained at different assessment dates 

within growing seasons for the Woodruff and Bruner Farm experiments from 2000 to 2002. 
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Figure 14. Maps of 100-seed weight (from 2000 to 2002) and green normalized difference 

vegetation index (GNDVI) for the assessment dates within the 2000, 2001, and 2002 seasons 

that had the highest linear relationships between 100-seed weight and reflectance data for the 

Woodruff Farm experiment. 
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Figure 15. Maps of 100-seed weight (2001 and 2002), difference vegetation index (DVI) and transformed vegetation index (TVI) 

for the assessment dates within the 2001 and 2002 seasons that had the highest linear relationships between 100-seed weight and 

reflectance data for the Bruner Farm experiment 
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Figure 16. Coefficients of determination (R2) of the relationships between SCN population 

densities at planting and remote sensing data from soybean canopies as percentage 

reflectance of narrow wavelength bands (A) and as vegetation indices (B) obtained at 

different assessment dates within growing seasons for the Woodruff Farm experiment from 

2000 to 2002. 
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Figure 17. Coefficients of determination (R2) of the relationships between SCN population 

densities at planting and remote sensing data from soybean canopies as percentage 

reflectance of narrow wavelength bands (A) and as vegetation indices (B) obtained at 

different assessment dates within growing seasons for the Bruner Farm experiment during 

2001 to 2002. 
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Figure 18. Maps of SCN population densities (SCN eggs 100 cm"3 soil"1) at planting (Pi), 

logio (Pi +1), and remote sensing data as percentage reflectance at 810 nm and near infrared 

reflectance (NIR) for the assessment dates within the 2000,2001, and 2002 seasons that had 

the highest linear relationships between logio (Pi + 1) and remote sensing data for the 

Woodruff Farm experiment. 
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Figure 19. Maps of SCN population densities (SCN eggs 100 cm"3 soil"1) at planting (Pi), 

logio (Pi +1), and remote sensing data as radiance ratio (RR) and normalized difference 

vegetation index (NDVI) for the assessment dates within the 2001 and 2002 seasons that had 

the highest linear relationships between logio (Pi + 1) and reflectance data for the Bruner 

Farm experiment. 
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occurs within a season, t+1, event that occurs next season: R2, linear coefficient of 

determination; SEEy, standard error of estimate for y. 
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Abstract 

Spatial statistics and geographic information systems (GIS) were useful in assessing 

spatial attributes of soybean cyst nematode (SCN) population densities in soybean fields. 

Additionally, spatial statistics, statistic regression, and correlation analyses coupled with GIS 

were important to quantify and to visualize the impact of SCN on quantity and quality of 

soybean yield. Experiments were conducted in two fields (with 995 and 613 quadrats) from 

2000 to 2003. From each quadrat, SCN population density was assessed twice per year 

(planting and harvest) and soybean yield (total yield, 100-seed weight, and seed protein and 

oil contents) was obtained. Variogram models described the spatial processes involving geo-

referenced SCN population densities. Limits of spatial structure (ranges) and variations in 

spatial dependency (partial sill to sill ratio) varied within and between seasons and were 

possibly affected by environmental factors. Also, changes in SCN population densities were 

possibly affected by environmental factors within and between soybean seasons, and the 

carrying capacity of soybean fields varied among growing seasons. Coefficients of 

determination (R2) for the relationships of within-season changes in SCN population 

densities (Pf/Pi) and SCN population densities at planting (Pi) were greater in 2000 and 2001 

than in 2002. Climatological data indicated that excessive moisture and high temperatures 

might have restricted SCN population density increases in both experimental fields in the 

2002 growing season. Overwinter changes in SCN population densities were related to SCN 

population densities obtained at planting time in the next season. There was a significant 

negative linear relationship between log-transformed SCN population densities at planting 

and soybean yield. Yield reduction could be partially explained by the reduction in size of the 

soybean seeds (100-seed weight). Also, SCN infection caused an increase in seed protein 

content and a decrease in seed oil content. In one experiment, high SCN population densities 

were found in the same area in which soybean plants had symptoms of iron deficiency 

chlorosis. In that area, soybean yield was quantitatively and qualitatively affected; however 



www.manaraa.com

120 

more research needs to be carried out to understand how SCN population densities and iron 

deficiency interact to cause yield losses. 

Introduction 

Soybean [Glycine max (L.) Merr.] is the most important oil crop and a major source 

of protein in the world (USDA, 2003). It is largely cultivated in all continents where 

agriculture is practiced. The United States, Brazil, Argentina, China, and India are the 

primary soybean-producing countries (Wilcox, 2004). Several biotic and abiotic factors cause 

soybean yield losses, among them soybean cyst nematode (Heterodera glycines Ichinohe), 

SCN. The known distribution of the pathogen has followed soybean expansion towards new 

agricultural lands (Noel, 1995), and the nematode has become one of the principal causes of 

soybean yield losses in the world (Wrather et al., 2001b). Economic reductions in production 

due to SCN surpass US $1 billion in the United States annually (Wrather et al., 2001a). Yield 

losses can be severe, even in the absence of noticeable symptoms (Niblack et al., 1991; Wang 

et al., 2003; Young, 1996). 

To understand the impact that SCN can have on soybean yield, it is necessary first to 

understand SCN population dynamics within a growing season and how SCN population 

dynamics are related to the quantity and quality of soybean yield. Identification and 

understanding of ecological conditions that reduce reproduction and augment mortality rates 

of SCN can possibly lead to development of new management tactics. Considering one crop 

season as unit of time (t), within-season events occur in time t and next-season events happen 

in time (t+1). The ratio between SCN population densities obtained at harvest (Pft) and at 

planting (Pit) can be defined as within-season change in SCN population densities (Pft/Pit). 

The ratio between the SCN population density obtained at next planting (Pi<t+i)) and SCN 

population density obtained harvest (Pft) characterizes the overwinter changes in SCN 
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population densities and can be defined as overwinter SCN survival (Pi(t+i)/Pft) (Todd et al., 

2003). 

Boag (1989) hypothesized that factors affecting population densities of plant-parasitic 

nematodes could be classified into three categories: those that are perfectly density dependent 

(intraspecific competition), those that are imperfectly density dependent (interspecific 

competition, parasitism, and prédation), and those that are density independent (abiotic 

conditions). These three types of factors can influence SCN population density within 

soybean seasons. However, it is hypothesized that only imperfectly density-dependent and 

density-independent factors affect SCN populations over winter. During this period, the lack 

of a susceptible host and the effect of extreme weather conditions, particularly low 

temperatures and/or low soil moisture, inhibit biological activities of this obligate parasite 

(Young, 1995). Both competition for limited resources and the presence of antagonist 

organisms in tomato fields were responsible for density-dependent reproductive and survival 

rates of Meloidogyne incognita (Kofoid and White) Chitwood (Ferris, 1985). Meloidogyne 

incognita suppressed population densities of SCN second-stage juveniles (J2) infecting 

soybean roots at low SCN egg population densities (Niblack et al., 1986). Changes in SCN 

population densities that occur within and between seasons were density dependent in SCN-

infested fields when mixtures of susceptible and resistant soybean cultivars were planted 

(Wallace et al., 1995) and when different cropping sequences with SCN-nonhost crops, SCN-

susceptible, and SCN-resistant soybean cultivars were deployed (Francl and Dropkin, 1986; 

Todd et al., 2003; Wang et al., 2000). The genetic compatibility between SCN and its hosts is 

one of the most important factors affecting reproduction of the nematode (Chen et al., 2001b; 

Faghihi et al., 1986; Sipes, 1995; Wang et al., 2000). Two SCN-resistant cultivars with 

different sources of SCN-resistance genes deployed in different rotations did not reduce SCN 

population densities at harvest by the end of the five-year experimental period (Francl and 

Wrather, 1987). 
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Factors controlling reproduction and survival rates in SCN populations vary in time 

and space. However, it is important to identify ecological factors that suppress nematode 

development and reproduction and increase its mortality rate. Environmental factors, such as 

soil temperature, soil pH, and soil fertility, may affect SCN development and reproduction. 

Infection of soybean roots by SCN juveniles does not occur at soil temperatures below 17 C 

(Alston and Schmitt, 1987). The ideal temperature range for SCN female development is 

from 20 to 28 C (Melton et al., 1986), with 26 C being the optimum temperature for cyst 

production (Anand et al., 1995). Numbers of mature females were positively correlated with 

soil pH (Anand et al., 1995; Francl, 1993) and with soil magnesium (Francl, 1993). 

Moreover, population densities of SCN cysts and eggs in the fall were negatively correlated 

with copper concentration (Francl, 1993). Soil texture characteristics may affect soil moisture 

content and atmosphere composition in the soybean rizosphere, thereby affecting SCN 

biological activities. Reproduction of SCN tended to be higher in coarse soil textures than in 

fine soil textures (Koenning and Barker, 1995), and high clay content in the lower horizons 

(15-45 cm) of soil profiles limited vertical growth of soybean roots and, thus, limited 

reproduction of SCN (Alston and Schmitt, 1987). It was shown that SCN cyst population 

densities could be predicted in some fields by the sand, silt, and clay content of the soil 

(Avendano et al., 2004). 

It is important to verify if cultural practices affect soil ecological characteristics that 

negatively influence SCN population dynamics. Soybean row spacing of 25 and 75 cm did 

not affect reproductive rates and SCN population densities at harvest in a soybean/corn 

cropping system (Chen et al., 2001a). Soybean cyst nematode reproduction in no-tillage 

production was reported to be equal to (Chen et al., 2001a) or greater (Noel and Wax, 2003) 

than reproduction in conventional soybean tillage production systems. However, SCN 

population densities were lower in no-tilled compared to tilled fields for soil textures with 

clay content equal to or greater than silt clay loam (Workneh et al., 1999). This result showed 
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the importance of considering the effects of the interactions of tillage practices and soil 

textures on SCN population densities. 

Initial SCN population densities have been shown to have a negative relationship with 

soybean yield (Francl and Dropkin, 1986; Koenning and Barker, 1995), and the yield benefit 

of planting resistant instead of susceptible cultivars in SCN-infested fields has been shown to 

be linear and positively related to initial SCN population densities (Chen et al., 2001b). 

However, yield losses in SCN-susceptible cultivars decreased when root infection was 

delayed from 2 to 6 weeks (Wrather and Anand, 1988). Also, differences in yield of resistant 

and susceptible soybean cultivars with comparable yield potentials decreased as the sand 

content of the soils decreased in infested fields (Koenning et al., 1988). For these soils, final 

SCN population densities were negatively correlated with sand content (Koenning et al., 

1988) .  

Knowledge about how SCN population dynamics affect soybean yield is very 

important for evaluating the efficacy of SCN management strategies and tactics. A number of 

studies have been conducted to quantify the relationship between SCN population density 

and soybean yield, but these studies did not show how these relationships are spatially 

distributed within soybean fields or how SCN population dynamics affect soybean yield 

quantitatively and qualitatively. Likewise, although previous studies evaluated both 

reproduction and survival of SCN, they did not examine or consider how these phenomena 

are spatially distributed in the fields. By sampling, estimating, and mapping SCN population 

densities in small quadrats for entire experimental areas, it should be possible to identify and 

characterize ecological factors affecting SCN population dynamics within and among 

seasons. 

Geographic information systems (GIS) offer the opportunity to generate maps of 

spatially referenced data. The tools present in GIS allow us to map and visualize how SCN 

population densities change in time and space (Nutter et al., 2002). Additionally, GIS provide 
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means to visualize the impact of SCN population densities and other factors on quantity and 

quality of soybean yield, thus GIS may provide geographic information to be utilized in site-

specific management of soybean fields. 

Spatial statistics can be used to determine how SCN populations are spatially 

structured. Mapping SCN population densities at planting and at harvest over several seasons 

and determining seasonal changes in spatially defined SCN populations may elucidate the 

role of specific environmental factors affecting these populations. The knowledge of how 

ecological factors impact SCN population densities may lead to development of new and 

more effective management practices to control this pathogen. Additionally, the 

identification of areas within fields where SCN population densities have been suppressed 

can direct the search for antagonist organisms for possible use as biological control agents 

and/or the manipulation of environmental factors that optimize the efficacy of SCN 

management programs. 

Spatial statistics have been shown to provide means to assess the spatial structure of 

nematode populations (Avendano et al., 2003; Avendano et al., 2004; Donald et al., 1999; 

Evans et al., 2002; Farias et al., 2002; Gavassoni et al., 2001; Morgan et al., 2002). But errors 

in the determination of spring population densities and the difficulties related to prediction of 

population dynamics of the potato cyst nematodes (PCN), Globodera spp., limited the 

development of site-specific management practices to control these nematodes (Evans et al., 

2002). Other limitations to adoption of site-specific management include high sampling 

costs, inefficient soil extraction methods, and lack of knowledge concerning how both biotic 

and abiotic factors affect soybean yield in SCN-infested fields (Donald et al., 1999). New 

sampling strategies have been discussed (Melakeberhan, 2002), and a nested-sampling design 

has been proposed to assess the spatial distribution of SCN at an affordable cost (Avendano 

et al., 2003). 
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Aboveground symptoms of SCN infection in soybeans include stunting and chlorosis 

of plants, often occuring in circular to oval patches that usually follow the direction of tillage 

(Donald et al., 1999). Spatial statistical analyses have shown that soybean fields infested with 

H. glycines were initially aggregated and that no-tillage and ridge-tillage systems resulted in 

greater aggregation of H. glycines population densities over time compared to conventional 

and reduced tillage systems (Gavassoni et al., 2001). Although the spatial patterns of SCN 

distribution in soybean fields have been previously studied, very little is known about spatial 

patterns of reproduction and survival of the SCN within a field from season to season at a 

spatial scale that can lead to discovery of new ecological and biological information. The use 

of GIS to map SCN population densities over time may supply useful information about the 

ecology of SCN populations within soybean fields. 

The main goals of this study were to quantify and map SCN population densities in 

SCN-infested fields and to discern the relationships between nematode densities and soybean 

yield. Another goal was to study the spatio-temporal structure of SCN populations under 

monoculture of a susceptible soybean. 

Materials and Methods 

Field experiments were conducted during the 2000, 2001, and 2002 growing seasons 

in fields with a history of occurrence of SCN. In the first year, one experiment was conducted 

on a single field located at the Iowa State University Woodruff Farm, Ames, IA. An SCN-

susceptible soybean cultivar, AgriPro 1995, was planted at a seeding rate of 30 seeds per 

meter. In the two subsequent years, an experiment was conducted at the Iowa State 

University Bruner Farm in addition to the experiment at the Woodruff Farm. An SCN-

susceptible cultivar, AgriPro 1702 RR, was planted in both experiments in 2001 and 2002. In 

all three seasons, a row spacing of 75 cm was used. The soil was disked and cultivated once 
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before planting, and soybean rows were planted in an east-to-west orientation. Both farms 

had clay loam soils, and results of texture and fertility analyses are presented in Table 1. 

A grid of 995 (2 X 3 m) quadrats was established at the Woodruff Farm experiment, 

and a grid of 613 similar-sized quadrats was established at the Bruner Farm experiment. 

Latitude and longitude values were determined for each quadrat. The exact coordinates of the 

quadrats were maintained in successive seasons using a Trimble Differential Geographic 

Positioning System (GPS) Unit (Trimble, Sunnyvale, CA). The quadrats in the grid formed a 

checkerboard design. Each quadrat had four soybean rows 2 m in length, and the two central 

rows were mechanically harvested. 

After harvest, soybean seeds were dried at 27 C and weighed, then seed moisture, oil, 

and protein were determined using a Tecator Grain Analyzer, model Infratec 1229 (Tecator 

AB, Hoganas, Sweden) in 2000 and 2001. In 2002, yield per quadrat was determined and 

standardized to a moisture content of 13% using a Dole 400 (Eaton Corp., Carol stream, IL) 

grain moisture tester, and seed oil and seed protein analyses were conducted at the Iowa State 

University Grain Quality Laboratory with a Infratec 1229 grain analyzer. Weight of 100 

seeds was obtained by arbitrarily selecting and weighing 100 seeds per quadrat from 2000 to 

2002. 

During the growing season, each quadrat in each field was visually inspected every 

seven to fifteen days, and plants showing disease symptoms were identified. Disease 

intensity per quadrat was recorded as incidence and/or severity. Incidence and severity were 

defined as the proportion of the total number of plants that were expressing disease 

symptoms and the proportion of plant tissue presenting symptoms of the diseases, 

respectively. When it was necessary, plant tissue was sampled and observed under the 

microscope to identification of the pathogens. Quadrats showing iron deficiency chlorosis 

were rated at the Bruner Farm experiment during the 2002 growing season. The typical 

symptoms of iron deficiency chlorosis on soybean leaves are characterized by yellowing of 
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interveinai areas of young leaves (McGlamery and Curran, 1989). Iron deficiency chlorosis 

symptoms were rated using a 0 to 2 scale, where 0 is the absence of symptoms in plants 

within a quadrat, 1 is the presence of iron deficiency chlorosis symptoms in at least one plant 

within a quadrat, and 2 is the occurrence of foliar symptoms of iron deficiency chlorosis 

associated with stunting of plants within a quadrat. Map of the distribution of plants with 

symptoms of iron deficiency chlorosis were generated using ArcGIS 8.0 software (ESRI, 

Redlands, CA). 

Soybean cyst nematode population densities were determined immediately before 

planting and after harvest in each experiment each year. Within each quadrat, six soil cores 

(2 cm diameter and 15 - 20 cm deep) were collected in a zigzag pattern, 10 cm apart from the 

two central rows, and were bulked. SCN cysts were extracted from 100 cm3 soil samples 

using a semi-automatic elutriator (Byrd et al., 1976). Using a drill press with a shaft-mounted 

rubber stopper rotating at 2340 rpm, SCN eggs were extracted from the cysts by crushing the 

cysts on a 250-gm-pore diameter sieve. The eggs were recovered on a 25-p.m-pore diameter 

sieve that was mounted under a 75-gm-pore diameter sieve (Faghihi and Ferris, 2000). The 

extracted SCN eggs were stained with acid fuchsin (Niblack et al., 1993), eggs were counted 

under a dissecting microscope at 5Ox magnification, and the result of the egg count was used 

to calculate the number of eggs present in a 100 cm3 sample with of soil. 

Data collection of soybean cyst nematode population densities, changes in SCN 

population densities, soybean yield were obtained for each quadrat in the fields. Maps were 

created using the geographic coordinates of the quadrats to geo-reference the variables of 

interest in ArcGIS 8.0. Within a field, minimum and maximum values of SCN population 

densities obtained, as well as mean, median, variance, and skewness of SCN population 

density distributions were calculated in S-Plus (Mathsoft, Inc., Cambridge, MA) for each 

assessment date of SCN population densities. 
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Spatial structure in SCN population density data was determined for each assessment 

made of SCN population densities at the Woodruff and Bruner Farm experiments. Analyses 

of the datasets, histograms, scatter-plots where the quantiles of two distributions were plotted 

against each other (normal QQ plots), and trend anlyses were conducted using a geostatistical 

extension of ArcGIS. Trends in the dataset can be removed and then the remaining residuals 

can be modeled (Webster and Oliver, 2001). After performing trend analyses of SCN 

population density data, trends were removed if they were detected and the residuals were 

modeled. In a spatial process, the limits of the spatial structure and the intensity of spatial 

dependence can be described using variograms. Variograms are functions that relate the 

variance of the difference between variables that are separated by a given distance with the 

distance that separate them (Oliver and Webster, 1990; Webster and Oliver, 2001). 

Variograms are functions win which the dependent variable is the variance of the 

differences between variables separated by a given distance and the independent variable is 

the distance that separate these variables (Cressie, 1991). A variogram has some basic 

parameters that can be used to describe it: range, sill, and nugget (Cressie, 1991; Johnston et 

al., 2001; Webster and Oliver, 2001). Range is the maximum distance within which spatial 

dependence is observed, and places beyond the range are spatially independent (Johnston et 

al., 2001; Webster and Oliver, 2001). Sill (S) is the maximum variance that occurs when the 

range is reached (Webster and Oliver, 2001). Theoretically, the variance should be zero when 

the distance that separates two variables is zero. However, variograms usually have positive 

values of variance that are called nugget when the distance separating two variables is zero. 

Nugget is caused by measurement error, by spatial dependent variation that exists at 

distances shorter than the smallest sampling interval, and by spatially uncorrelated variation 

(Cressie, 1991; Oliver and Webster, 1990). The sill can be described as the sum of the nugget 

plus the partial sill (PS), with partial sill being the difference between sill variance and 

nugget variance (Johnston et al., 2001). Within a given range, the higher the partial-sill-to-sill 
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ratio (PS S"1), the higher the spatial dependency in a spatial process (Webster and Oliver, 

2001). There are several different variogram models (Cressie, 1991), however the 

exponential and spherical models are the most used in earth sciences (Oliver and Webster, 

1990). For these two models, variance increases with distance until the range is reached 

Directional variograms can be used to check whether isotropy occurs in the spatial 

process. Isotropy is when changes in spatial dependence in a spatial process are only a 

function of the distance between locations (Johnston et al., 2001). Biologically, isotropy 

means that two biological variable of interest will be more similar as the distances that 

separate these variables decreases, and that the physical process affecting these variables 

changes uniformly in space (Cressie, 1991). Spatial process in which spatial dependence 

varies with both distance and direction is called anisotropic process (Webster and Oliver, 

2001) and is caused some physical process that changes differentially in space (Cressie, 

1991). In an anisotropic process, directional variograms can have different ranges and sills 

(Webster and Oliver, 2001). Occurrence of anisotropy in the SCN population density datasets 

was assessed prior to modeling. 

Models fitting the SCN population density data were selected based on the mean 

prediction error, root mean square of the prediction errors, average standard error, and the 

prediction error maps generated after kriging. Kriging is a method of estimation by local 

weighted averaging (Oliver and Webster, 1990) or a statistical method of interpolation that 

uses geographically referenced data to predict values of the same data type in unsampled 

locations (Johnston et al., 2001). 

The relationships among SCN population densities, changes in SCN population 

densities within and between soybean growing seasons, and quantity and quality of soybean 

yield were described using regressions and correlations in S-Plus (Mathsoft, Inc., Cambridge, 

MA) and Sigma Plot (SPSS, Inc., Chicago, IL). Logarithmic transformation (logioP+1) of 

the SCN population densities (P) was done prior to the regressions. Scatter plots were 
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generated to visualize the relationships between variables, and variables were transformed to 

avoid problems with residuals in linear regressions. To evaluate the linear models, F-statistics 

and the corresponding probability values (P-values), linear coefficient of determination (R2), 

and the standard error for estimate of y (SEEy) were considered. Regression lines were 

compared using the linear general test approach (Neter and Wasserman, 1974). 

Results 

Soybean cyst nematode egg population densities had a right-skewed distribution in all 

assessments dates (Table 2). The mean and median of SCN egg population densities 

increased from planting (Pit) to harvest (Pft) in the 2000 growing season at the Woodruff 

Farm experiment and in both Woodruff and Bruner Farm experiments in the 2001 growing 

season. However, mean and median population densities decreased in both experiments 

within the 2002 growing season (Table 2). The mean and median of SCN population 

densities decreased over winter, from harvest (Pft) to planting of the next year (Pi(t+i)), in 

both experiments from 2000 to 2003 (Table 2). 

Spatial statistics were used to assess spatial structure of SCN egg population densities 

at planting and at harvest from 2000 to 2003 at the Woodruff and Bruner Farm experiments. 

Range, sill (partial sill and nugget), nugget, partial-sill-to-sill ratio, and angle of anisotropic 

ellipse values for the best models obtained at the Woodruff and Bruner Farm experiments at 

planting and at harvest from 2000 to 2003 are presented in Table 3. Spherical and 

exponential variogram models best fit the data at the both experiments from 2000 to 2003 

(Table 3). Deterministic trends in SCN population density spatial processes were visualized 

in the preliminary analyses (trend analyses) of harvest 2000 and planting 2003 Woodruff 

Farm data and were removed using a second-degree polynomial, and then the residuals were 

modeled. Anisotropy was modeled when directional differences in the variograms were 
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observed at the Woodruff Farm experiment (planting 2000 and from harvest 2001 to harvest 

2002) and at the Bruner Farm experiment (from planting 2001 to harvest 2002) (Table 3). 

The maximum distance where spatial dependence is detected is called the range, 

which defines limits of the spatial structure of a spatial process. Contraction and expansion of 

the spatial structure of SCN egg population densities due to changes in range values within 

and between soybean growing seasons were observed at the Woodruff Farm experiment from 

2000 to 2003. Spatial structure contracted within the 2000 growing season, but the ranges 

increased within the 2001 and 2002 growing seasons (Table 3). At the Bruner Farm 

experiment, the ranges were beyond or close to the limits of the experimental field (70 x 57 

m) during both the 2001 and 2002 seasons. During overwintering, the ranges decreased in 

both experiments; however the ranges increased at the Woodruff Farm experiment from 

harvest of the 2000 growing season to planting of the 2001 growing season (Table 3). 

The maximum semivariance that occurs when the range is reached defines the sill, 

and the minimum value of the semivariance that occurs when the distances between two 

locations is zero is called the nugget. Differences in directional variograms occurred at the 

Bruner Farm experiment in the 2001 and 2002 seasons, and anisotropy was modeled. The 

anisotropopic ellipses were in a northeast-southwest direction at planting time and in a 

northwest-southeast direction at harvest time with similar angles between different planting 

assessments, 31.6 and 40.2 degrees, and between different harvest assessments, 296.2 and 

334.0 degrees, respectively, for the data from the 2001 and 2002 seasons (Table 3). 

Kriging using the best variogram models (Table 3) was done to generate maps of 

SCN egg population densities (Figs. 1 and 2). Within a given range, the higher the partial-

sill-to-sill ratio (PS S"1), the greater the spatial dependency is in a spatial process (Webster 

and Oliver, 2001). The degree of spatial dependence (PS S"1) decreased within the 2000 

growing season, but increased continuously from harvest 2000 to harvest 2002 at the 

Woodruff Farm experiment. At this experiment, a decrease in the degree of spatial 
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dependence was observed from harvest 2002 to planting 2003 (Table 3). Spatial dependency 

decreased within season and increased over winter at the Bruner Farm experiment from 2001 

to 2002. 

Some spatial features of SCN egg population densities were present in the fields 

throughout each assessment date. The lowest SCN egg population densities were observed in 

the northeastern corner at the Woodruff Farm experiment from 2000 to 2003 (Fig. 1). The 

highest SCN egg population densities were observed along the northern and western borders 

of the Bruner Farm experiment in 2001 and 2002 (Fig. 2). 

The greatest changes in SCN population densities at the Woodruff Farm experiment 

(2000 and 2001) and at the Bruner Farm experiment (2001) were observed in quadrats where 

SCN egg population densities were not detectable or at very low levels at the time of 

planting. SCN population densities were transformed (logmP+1) and regressed on 

logarithmic-transformed (logio ((Pf+l)/(Pi+l)) within-season changes of SCN population 

densities (Pft/Pit) and logarithmic-transformed (log m ((Pi(t+i)+l)/(Pft+l)) between-season 

changes of SCN population densities (Pi(t+i)/Pft) (Table 4). Regressions of SCN population 

densities at planting on the within-season changes in SCN population densities had negative 

slopes in both experiments between the 2000 and 2002 growing seasons (Table 4). For the 

same period, there was a positive regression of SCN population densities at planting on the 

within-season changes in SCN population density (Table 4). The linear coefficients of 

determination (R2) for the relationships between SCN population density at planting and 

within-season changes in SCN population density were greater when the mean SCN 

population density increased from planting to harvest (Woodruff Farm 2000 and 2001, 

Bruner Farm 2001) than when the mean SCN population density decreased in the same 

period (Woodruff and Bruner Farm 2002) (Table 4). The opposite occurred with the 

coefficients of determination for the relationships between SCN population densities at 

harvest and within-season changes in SCN population densities (Table 4). In 2000 and 2001, 
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slopes of the regressions of (logio Pit) on (logio Pft/Pit) did not significantly differ (P > 0.05) 

between the Woodruff and Bruner Farm experiments. Linear coefficients of determination 

for the regressions of SCN egg population densities on within-season changes in SCN 

population densities in 2002 were lower (-0.55 and -0.40 for the Woodruff and Bruner Farm 

experiments respectively) than the ones obtained in 2000 (-0.84 for the Woodruff Farm 

experiment) and 2001 for both experiments (-0.86 and -0.92 for the at Woodruff and Bruner 

Farm experiments, respectively). Soybean cyst nematode population densities at harvest best 

described the variation of within-season changes in SCN population densities in 2002 (R2 = 

0.31 and 0.47 for the Woodruff and Bruner, respectively) (Table 4). Variation in the 

between-season changes of SCN population densities was best estimated by the variation in 

the SCN population densities observed the next planting season; R2 ranged from 0.35 to 0.53 

for the Woodruff Farm experiment (2001/2002) and the Bruner Farm experiment 

(2001/2002), respectively (Table 4). 

The greatest changes in SCN population densities within a season and the lowest 

changes in SCN population densities between seasons were observed at the northeastern 

corner of the Woodruff Farm experiment from the 2000 growing season to the planting 2002. 

In this experiment, there was no evident pattern in the changes of SCN population densities 

from planting 2002 to planting 2003 (Fig. 3). At the Bruner Farm experiment, the greatest 

changes in SCN population densities were observed following the east to west direction at 

the southern part of the field in 2001. Within (2002) and between seasons (2001/2002), 

changes in SCN population densities followed the soybean-row direction (Fig. 4). 

There were few foliar diseases observed on soybean plants in both fields from 2000 to 

2002. At the Woodruff Farm experiment, Cercospora sp. and Septoria sp. were observed 

infecting soybean plants at low disease incidence (< 4.0%) and severity (< 6.0%) levels. A 

general yellowing of the leaves was observed across the Woodruff Farm experimental field 

during drought periods; however, plants recovered after rain. At the Bruner Farm experiment, 
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Cercospora sp. was observed infecting soybean plants at low incidence (~3%) and severity 

(< 2%) levels. Typical symptoms of iron deficiency chlorosis on leaves were observed at the 

northwestern and northern areas of the Bruner Farm experiment in both years. In 2002, iron 

deficiency chlorosis was mapped at the Bruner Farm experiment (Fig. 5). 

Besides several other uncontrolled yield-limiting factors affecting soybean yield, 

SCN population densities were correlated with yield (Table 5). Soybean cyst nematode 

population density at planting (Pi) was negatively correlated with yield (ranging from 162 to 

1745 g quadrat"1) and seed size (100-seed weight ranging from 8.6 to 16.5 g 100 seed"1). 

Except for the Woodruff Farm experiment in 2002, greater absolute values of correlation 

coefficients were observed in the relationships between Pi and yield than between SCN egg 

population density at harvest (Pf) and yield (Table 5). Absolute values of the correlation 

coefficients among seed protein and seed oil with SCN population densities at the Bruner 

Farm experiment ranged from 0.12 to 0.37 and from 0.15 to 0.36, respectively. At the 

Woodruff Farm experiment, absolute values of the correlation coefficients among seed 

protein and seed oil with SCN population densities ranged from 0.07 to 0.22 and from 0.10 to 

0.16, respectively. However, there were assessment dates for which correlations between 

SCN population densities and seed protein or seed oil content were not significant at the 

Woodruff Farm experiment. Seed protein content was positively correlated with Pi (Table 5). 

Seed oil content was negatively correlated to seed protein content (data not shown), with 

correlation coefficient values varying from -0.31 to -0.90 at the Woodruff Farm (2002) and 

Bruner Farm (2001) experiments, respectively. Maps showing similarities in geographic 

patterns of the distribution of total soybean grain yield, seed size, seed protein content, seed 

oil content, and SCN population densities for the instances with the highest correlations 

between SCN egg population densities and soybean yield variables are presented for the 

Woodruff and Bruner Farm experiments (Figs. 6 and 7). 
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Discussion 

In the experiments, the mean SCN population densities increased within season, from 

spring to fall, in 2000 and 2001, but decreased in 2002. During this latter season, 

simultaneous occurrence of high precipitation and high temperatures were probably 

detrimental to SCN reproduction. 

Spatial statistical analyses showed that the spatial structure and spatial dependence of 

SCN population densities increased and decreased in both experiments within and between 

soybean seasons. Changes in the limits of the spatial structure of SCN population density 

were not clearly related with seasonal changes in the mean SCN population densities at the 

Woodruff Farm experiment. Ecological factors possibly affected differently the limits of the 

spatial processes involving SCN population densities and seasonal changes nematode 

population densities. At the Bruner Farm experiment, the ranges increased and decreased as 

the mean SCN population increased and decreased throughout assessment dates. However, 

overwintering resulted in a decrease in mean SCN population densities and a decrease in the 

ranges of variogram models in three out of four occasions. More research needs to be done to 

improve the understanding of the effect of factors, such as soil texture, soil fertility, soil 

temperature, and soil moisture, on spatial processes of SCN population densities. 

The angles of the anisotropic ellipses observed at the Woodruff and Bruner farm 

experiments probably were related to tillage practices that occurred at oblique angles relative 

to the direction of planting. Tillage can be considered a physical process that affects the 

spatial structure and/or spatial dependency of SCN population densities in SCN-infested 

fields. 

The nuggets observed in our experiments were large, and the high values of the 

nuggets can possibly be explained by efficiency of the method of extracting SCN from soil 

samples and sampling errors. Measurement errors in the extraction of SCN from soil can be 

related to efficiency of the method of extraction (Moreira et al., unpublished data), sampling 
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error (Francl, 1986), and to the level of nematode infestation at different parts of the field 

(Seinhorst, 1982). Other common factor that affects the size of the nugget is the spatial 

structure that can occur at distances that are shorter than the minimum sampling interval. The 

minimum distance between two samples in our experiments was 4 m. Additionally, we did 

not account for these possible spatial variations in SCN population densities that could exist 

at distances shorter than the dimensions of a quadrat (2x3 m), when we obtained the six soil 

cores spatially separate to form a composite soil sample for each individual quadrat. The use 

of these composite samples to represent SCN population densities within quadrats probably 

affected the size of the nuggets in our experiments. Future work should adopt different 

sampling designs that consider sources of spatial variation that can occur at distances shorter 

than the smallest sample interval. 

Spatial statistics provided methods to describe the changes in the characteristics of 

spatial process of SCN population densities in soybean fields over time. It is interesting to 

note that a spatial process can change in different aspects, such as range, sill, nugget, and 

occurrence of anisotropy, within and between seasons. Thus, it will be important to establish 

in future studies what factors determine those changes and how they affect the spatial 

processes. 

In our fields, soybean rows were planted in an east-to-west direction; however the 

orientation of the anisotropic ellipses occurred at angles that did not coincide to the east-west 

direction. This result demonstrates the necessity to fully understand factors such as 

topography and spatial variability in soil properties that could affect the establishment 

anisotropic processes of SCN population densities in soybean fields. Thus, research to 

understand the effect of agronomic practices on SCN population density spatial processes 

should take into consideration seasonal and annual changes that can affect spatial processes. 

The variation in the 2000 and the 2001 within-season changes of SCN population 

density (Pf/Pi) was best explained in both experiments by the variation in SCN population 
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densities obtained at planting (Pi). In contrast, the variation in the 2002 within-season 

changes of SCN population density (Pf/Pi) was best explained in both experiments by the 

variation in SCN population at harvest (Pf). Linear coefficients of determination (R2) for the 

best relationships between SCN population densities and within-season changes of SCN 

population densities were greater in 2000 and 2001, than in 2002 (Table 4). The higher the R2 

quantifying the relationship between Pi and Pf/Pi, the greater the presence of density-

dependent and partially density-dependent factors controlling population dynamics of 

nematodes in a field (Boag, 1989). Low R2 values in these relationships indicate the presence 

of density-independent factors (environmental conditions) and/or imperfectly density-

dependent (interspecific competition, parasitism, and prédation) factors controlling within-

season changes in SCN population densities. The R2 values we obtained indicated that 

intraspecific competition and/or the presence of antagonistic organisms may have played 

major roles in affecting SCN population densities in the 2000 and 2001 soybean growing 

seasons. Density-independent and/or imperfectly density-dependent factors caused the 

deterioration of the relationships between SCN population densities and within-season 

changes of SCN population densities in 2002. Furthermore, within-season changes in SCN 

population densities had a small range (from 0 to 5) in both experiments and did not have a 

specific pattern that might suggest that the entire fields were under the influence of the same 

environmental factors. Climatological data obtained at the Ames Weather Station showed 

that the 2002 growing season had the greater precipitation (606 mm) and higher average 

temperature (20.8 C) compared to 2000 (356 mm and 20.6 C) and to 2001 (511 mm and 20.3 

C) growing seasons (data not shown). Besides the volume of precipitation, also the timing of 

the rain may have had an effect on the changes in SCN population densities observed within 

the 2002-growing season. During the months of July and August, 30%, 27%, and 54% of the 

total seasonal precipitation occurred in the 2000, 2001, and 2002 growing seasons, 

respectively (data not shown). Additionally, the month of July 2002 had 20 days with 
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temperatures above 30 C while this same month in 2000 and 2001 had 5 and 12 days with 

temperatures above 30 C, respectively (data not shown) (IBM, 2004). Excess moisture and 

temperatures above the ideal range for SCN female development (Melton et al., 1986) may 

have affected the SCN populations throughout the entire experimental fields, causing the 

within-season changes in SCN population densities to be less dependent of the levels of the 

SCN population densities at planting and at harvest. 

Overwintering reduced the mean SCN egg population densities in the experiments. 

The between-season changes in SCN population densities should be more affected by factors 

that are partially dependent or independent of SCN population densities since SCN is not 

biologically active during most over winter periods because of the low temperatures (Alston 

and Schmitt, 1987) and the absence of host during this time. These factors would explain the 

low R2 for the regressions of between-season changes in SCN population densities and SCN 

population densities measured at planting and harvest. 

The greatest within-season changes in SCN population densities observed in both 

experiments in 2000-2001 were in quadrats that had very low SCN egg population densities 

at planting. Overestimation of the changes in nematode population densities may be caused 

by false negative results of nematode extractions, by existence of minimum thresholds of 

detection for extraction methods, and by inaccuracies in determination of low nematode 

population densities (Chen et al., 2001a; Donald et al., 1999; Farias et al., 2002; Francl and 

Dropkin, 1986; Seinhorst, 1982; Tylka and Flynn, 2000). Sampling protocols can be 

designed and used to improve detection of SCN and the potato cyst nematode in fields (Been 

and Schomaker, 1996; Francl, 1986). However, the high cost of sampling may limit the 

circumstances in which new assessment strategies for SCN population density can be 

adopted. 

Soybean-yield components, such as number of pods per area, number of seeds per 

pod, and the size of the seeds, can be affected by biotic and abiotic stresses, and multiple 
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stresses may affect soybean crop during growing seasons. Negative relationships between 

SCN population densities at planting and soybean yield were observed, and the yield 

reduction could be, at least partially, explained by the reduction that occurs in seed size. 

Besides quantitative losses, SCN infection may cause an increase on the seed protein content 

and a decrease in seed oil content. The results of the study show that the effects of SCN 

population densities on yield possibly vary as a function of environmental factors. More 

research is needed to verify how the quality and composition of the seed oil and seed protein 

is affected by SCN. 

At the Bruner Farm experiment, SCN population densities at planting were negatively 

correlated with soybean yield, seed oil content, and 100-seed weight, but positively 

correlated with seed protein content. The map of iron deficiency chlorosis symptoms and the 

map of SCN population densities at planting showed that iron deficiency chlorosis and high 

SCN population densities occurred in the same areas. 

Iron deficiency chlorosis and SCN population densities cause yield losses and affect 

soybean seed quality; however more research needs to be carried out to understand why SCN 

population densities are high in areas in which iron deficiency chlorosis symptoms are 

detected in soybean plants. Also, it is important to understand the combined impact of SCN 

infection and iron deficiency on soybean yield. 

The occurrence of iron deficiency chlorosis and high SCN population densities in the 

same areas suggests that it may not be easy to distinguish between these two factors causing 

chlorotic symptoms in soybean fields. Incorrect or incomplete diagnoses can lead to 

implementation of inadequate or inappropriate control practices. 

Mapping SCN population densities in soybean fields is important to identify 

ecological zones in the fields that are suppressive or conducive to SCN reproduction. 

Identification of such conditions possibly could lead to the development of new management 

strategies to control the nematode. Furthermore, the use of GIS software allowed the 
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visualization of the geographic similarities between the distribution of SCN population 

densities and soybean yield. In this way, this study showed the quantitative and qualitative 

impact this pathogen can have on soybean yield. 

Allowing overlaying maps of different variables, such as soil fertility, soil texture, 

soil temperature, soil moisture, SCN population density, and of the changes in SCN 

population densities that may occur within and between seasons, GIS can be used to identify 

the effect of ecological variables on SCN populations and can provide information on the 

combined effect of those variables on soybean yield. The results presented here reinforce the 

necessity of more research to understand the impact SCN can have on soybean yield under 

different environmental conditions. 

Spatial statistics and geographic information systems (GIS) were useful to study and 

visualize SCN populations in soybean fields, to verify the impact SCN has in the quantity 

and quality of soybean yields, and to detect simultaneous occurrence of SCN and iron 

deficiency in soybean fields. The GIS tools and statistical techniques utilized in the study 

showed that they can be used to expand scientific understanding of SCN population 

dynamics, the SCN-soybean pathosystem, and the factors that can impact them. 
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Table 1. Texture and fertility characteristics of the clay loam soils at Woodruff and Bruner Farm experimental fields. 

Field Clay Silt Sand Organic matter PH Phosphorus Potassium Iron 

% % % % ppm ppm ppm 

Woodruff 30.2 34.8 35.0 5.0 6.9 29 163 39.8 

Bruner 30.2 34.4 35.4 4.4 7.1 66 167 46.5 
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Table 2. Statistical characteristics of SCN egg population densities from the 995 and 613 quadrats at the Woodruff and Bruner 

Farm experiments, respectively, at planting and at harvest from 2000 to 2003. 

Population 2000 2001 2002 2003 
rieiu 

densityt Planting Harvest Planting Harvest Planting Harvest Planting 

Woodruff Min. 0 0 0 900 300 150 0 
Max. 12,800 55,200 123,000 76,200 52,000 23,400 27,400 

Median 1,500 10,100 6,800 14,500 8,400 4,800 4,200 

Mean 2,274.6 11,912.0 8,746.3 16,678.0 9,787.0 5,649.0 5,279.6 
Variance 5,370,343 74,898,640 67,394,248 118,026,496 47,999,955 16,461,683 17,695,484 

Skewness 1.55 1.11 187 1.37 1.34 1.28 1.46 

2000 2001 2002 2003 

Planting Harvest Planting Harvest Planting Harvest Planting 

Bruner Min. N/D+ N/D 0 900 550 0 N/D 

Max. N/D N/D 10,100 43,400 53,700 13,600 N/D 

Median N/D N/D 800 7,800 6,200 2,400 N/D 

Mean N/D N/D 1,316.6 9,252.2 7,912.1 3,022.2 N/D 

Variance N/D N/D 2,102,500 32,182,929 35,744,854 5,350,432 N/D 

Skewness N/D N/D 2.18 1.63 1.82 1.60 N/D 
t Min., minimum SCN egg population density quadrat"1; Max., maximum SCN egg population density quadrat"1; Median, median SCN egg 
population density quadrat"1; Mean, mean SCN egg population density quadrat"1; Variance, variance SCN egg population density quadrat"1; 
Skewness, degree of skeewness presented by the distribution of SCN egg population density quadrat"1. 
t N/D, not determined. 
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Table 3. Characteristics of the fitted variogram models for SCN population density data obtained before planting and after harvest 

at the Bruner and Woodruff Farm experiments from 2000 to 2003. 

Woodruff 
Spatial Model 2000 2001 2002 2003 

Planting Harvest Planting Harvest Planting Harvest Planting 

Type sphericalt sphericalj spherical exponential! exponential! exponential! spherical} 

Range 35.4- 19.1§ 21.1 40.8 98.8 - 70.9 94.8-78.1 99.2 - 29.0 36.1 

C'11 Partial Sill 1,860,000 10,606,000 30,446,000 56,871,000 31,871,000 11,372,000 4,910,800 
olll 

Nugget 3,244,800 53,047,000 44,116,000 70,130,000 22,487,000 6,533,500 11,335,000 

Angled 285.9 29.8 346.3 284.3 

PS S-1# 0.36 0.17 0.41 0.45 0.59 0.63 0.30 

Bruner 

2000 2001 2002 2003 

Planting Harvest Planting Harvest Planting Harvest Planting 

Type N/Dtf N/D spherical f exponential! exponential! exponential! N/D 

Range N/D N/D 97.6-78.1 111.6-99.5 97.6 - 62.7 83.0 - 35.5 N/D 

c:ii Partial Sill N/D N/D 1,428,000 18,570,000 21,736,000 2,067,100 N/D 
Olll 

Nugget N/D N/D 1,130,400 19,383,000 18,709,000 3,600,800 N/D 

Angle N/D N/D 31.4 296.9 39.6 335.5 N/D 

PS S"1 N/D N/D 0.56 0.49 0.54 0.36 N/D 
t Anisotropy was modeled 
J Deterministic trends were removed from the spatial process by a second order polynomial, and the residual process was modeled 
§ Range - minor axis of the anisotropic ellipse 
f Angle of the major axis of the anisotropic ellipse - 0 degree points north 
# Partial-sill-to-sill ratio 
ff N/D, not determined 
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Table 4. Slopes, intercepts, and coefficients of determination (R2) for linear regressions of transformed SCN egg population 

densities at planting (logio Pi+1) and at harvest (logio Pf+1) on transformed within-season changes in SCN egg population 

densities (logio (Pf+1)/Pi+1)) and on between-season changes in SCN egg population densities (logio (Pi(t+i>+l)/(Pft+l)) at the 

Woodruff and Bruner Farm experiments from 2000 to 2003. 

Experiment 

SCN egg population 

densityf 

Within-season changes in SCN population 

densities} 

Between-season changes in SCN 

population densities^ 

Year Date slope intercept R2 slope intercept R2 

Woodruff 

Farm 
2000 

Planting 

Harvest 

-0.84 

0.60 

3.43 

1.5 

0.65 

0.13 -0.53 -1.88 0.18 

2001 
Planting 

Harvest 

-0.86 
0.60 

3.62 
-2.07 

0.70 

0.11 

0.68 
0.68 

-2.73 
2.56 

0.45 

0.28 

2002 
Planting 

Harvest 

-0.55 

0.58 
1.89 
-2.36 

0.26 
0.31 

0.15 

-0.47 

-3.16 

1.65 

0.44 

0.18 

2003 Planting -0.58 2.13 0.35 

Bruner Farm 
2001 

Planting 

Harvest 

-0.92 
0.40 

3.68 
-0.48 

0.87 
0.02 -0.33 185 0.22 

2002 
Planting 

Harvest 

-0.40 

0.78 

3.61 

3.61 

0.29 

0.47 

0.67 185 0.53 

t Transformed SCN egg population density at planting, logio (Pi+1); transformed SCN population density at harvest, 
logio (Pf+1) 
% Transformed within-season changes in SCN egg population densities, logio ((Pf+1) (Pi+1)"1) 

Transformed between-season changes in SCN egg population densities, logio ((Pi+l(t+i>) (Pf+1 J™1) 
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Table 5. Linear correlation coefficients of SCN egg population densities at planting (logio (Pi+1)) and harvest (logio (Pf+1)) with 

soybean yield variables: seed yield (g quadrat"1), 100-seed weight (g 100 seeds"1), and seed protein (%), seed oil (%) obtained at 

Woodruff and Bruner Farms from 2000 to 2002. 

Woodruff F arm experiment Bruner F arm experiment 

2000 2001 2002 2001 2002 

Pi Pf Pi Pf Pi Pf Pi Pf Pi Pf 

Seed yield -0.24** -0.07* -0.17** 0.06* -0.20** -0.27** -0.26** -0.12* -0.35** -0.25** 

100-seed weight -0.11** NS NS NS -0.29** -0.31** -0.16** -0.21** -0.34** -0.23** 

Seed protein 0.07* 0.12** NS -0.22** 0.09* 0.11** 0.37** 0.22** 0.12* 0.09* 

Seed oil 0.10** NS NS 0.16** NS NS -0.36** -0.26** -0.24** -0.15** 

NS, nonsignificant at the 0.05 probability level 
* Significant at the 0.05 probability level 
** Significant at the 0.001 probability level 



www.manaraa.com

153 

9%à km 
Planting 2000 

SCN egg1100 cm3 soil 
0-203 
204 - 334 
335-538 
539 - 856 
857-1353 

HI 1354-2129 
•• 2130 - 3340 
H| 3341 - 5232 
H 5233 - 8186 

8187-12800 

Harvest 2000 

SCN egg/100 cm3 soil 
0 - 2942 
2943 - 5065 
5066 - 6595 
6596 - 8718 
8719-11660 

*• 11661 -15740 
•I 15741 - 21398 

21399 - 29242 
•• 29243 - 40119 

40120 - 55200 

Planting 2001 

SCN egg/100 cm3 soil 
0 - 2461 
2462 - 3779 
3780 - 4486 
4487 - 5805 
5806 - 8266 
8267-12859 

| 12860 - 21431 
I 21432 - 37428 
| 37429 - 67283 

I 67284 -123000 

536™ 
Planting 2002 

SCN egg/100 cm3 soil 
300 - 2836 
2837 - 4612 
4613-5855 
5856 - 7631 
7632-10168 

MI 10168-13791 
WM 13792 -18967 
HE 18968 - 26359 

26360 - 36918 
36918 - 52000 

Harvest 2002 

SCN egg/100 cm3 soil 
150-1389 
1390-2283 
2284 - 2928 
2929 - 3821 
3822 - 5061 
5062 - 6780 

| 6781 - 9162 
| 9163-12466 
|12467-17048 
I 17049 - 23400 

Planting 2003 

SCN egg/100 cm3 soil 
0-1232 
1233-2070 
2071 - 2639 
2640 - 3477 
3478 - 4709 
4710 - 6523 

| 6524 - 9192 
| 9193-13119 
| 13120-18897 

I 18898 - 27400 

*1 
Harvest 2001 

SCN egg/100 cm3 soil 
900 - 6181 
6182-9184 
9185-10892 
10893-11863 
11864-13571 

H 13572-16574 
16575-21855 

•I 21856 - 31143 
H 31144 - 47476 

47477 - 76200 

Figure 1. Maps of SCN egg population densities obtained by kriging the best variogram 

models for each planting and harvest assessment date at the Woodruff Farm experiment from 

2000 to 2003. 
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Planting 2001 Harvest 2001 Planting 2002 Harvest 2002 

SCN egg 1100 cm3 soil 

0-137 

138 - 222 

223 - 359 

360 - 580 

581 - 935 

936-1505 

1506-2424 

2425 - 3901 

3902 - 6277 

6278-10100 

SCN egg/100 cm3 soil 

900 - 3748 

3749 - 5320 

5321 - 6188 

6189 - 6667 

6668 - 7535 

HiH 7536 - 9107 

H 9108-11956 

H 11957-17116 

•H 17117-26464 

•• 26465 - 43400 

SCN egg/100 cm3 soil 

550 - 2182 

2183-3167 

3168 - 3761 

3762 - 4746 

4747 - 6379 

6380 - 9083 

9084-13566 

13567 - 20994 

20995 - 33302 

33303 - 53700 

SCN egg/100 cm3 soil 

0-995 

996-1579 

1580-1921 

1922-2121 

2122-2463 

PPBI 2464 - 3046 

H 3047 - 4042 

Hi 4043 - 5742 

H 5743 - 8645 

8646-13600 

LA 

Figure 2. Maps of SCN egg population densities obtained by kriging the best variogram models for each planting and harvest 

assessment date at the Bruner Farm experiment in 2001 and 2002. 
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*. A\ 

•VJ5T 

: . < ' /. T - . : 

Within-season changes 
in SCN population densities 

2000 

Between-season changes 
in SCN population densities 

2000/2001 

Within-season changes 
in SCN population densities 

2001 

(Pf2000/Pi2000) 
00 0 - 0.25 

•00.26-0.50 

• 0.51-0.75 

••0.76-1.00 

1 [1.01-5.00 

en s oi -10.00 
00 10.01 -20.00 

I I 20.01 -40.00 

I | 40.01 -22.700.00 

(Pi2001/Pf2000) 
00 0 - 0.25 

000.26-0.50 

1 I 0.51-0.75 

• 0.76 -1.00 

I I 1.01-5.00 

I '' "I 01 10.00 
Mi 10.01-20.00 

I I 20.01 -40.00 

[ j 40.01 -1,200.00 

<Pf2001/PI2001) 
^0 0-0.25 

00 0.25 -0.50 

1 I 0.51-0.75 

I I 0.76-1.00 

I I 1.01-5.00 

tS3M 5.01 -10.00 

00 10.01 - 20.00 

I I 20.01 -40.00 

I I 40.01-22.200.00 

Between-season changes 
in SCN population densities 

2001/2002 

Within-season changes 
in SCN population densities 

2002 

v'l«S 

Between-season changes 
in SCN population densities 

2002/2003 

(PI2002/Pf2001) 

00 0.26 0 50 

• 0.51-0.75 

1 I 0.76-1.00 

I I 1.01-2.00 
Hi 2.01 - 3.00 

00 3.01 - 5.00 

• 501 -10.00 
1 1 10.01-22.60 

(Pf2002/Pi2002) 

Wm 0.26 - 0.50 
I I 0.51 - 0.75 
I I 0.76-1.00 
I I 1.01-1.50 
PEW 1.51-2.00 
!• 2.01 - 3.00 

I I 3.01-4.00 
••<01-5.00 

(PI2003/Pf2002) 
^0 0 - 0.25 

IB 0.26 - 0.50 
I I 0.51 - 0.75 
I I 0.76-1.00 

I I 1.01-2.00 

WW 2.01 - 5.00 

00 5.01 -10.00 
1 I 10.01 - 20.00 

• 20.01 - 30.60 

Figure 3. Maps of within-season changes in SCN egg population density (Pft/Pit) and 

between-season changes in SCN egg population density (Pi(t+i)/Pft) obtained at the Woodruff 

Farm experiment from 2000 to 2003. 
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Within-season changes 
in SCN population densities 

2002 

Within-season changes 
in SCN population densities 

2001 

Between-season changes 
In SCN population densities 

2001/2002 

(Pf2001/Pi2001) 
Hi 1.00-2.00 

m 2.01 -10.00 
I I 10.01 -20.00 

I I 20.01 - 50.00 

I I 50.01 -100.00 

BB 100.01 -500.00 

m 500.01 -1.000.00 

I I 1,000.01 -3,000.00 

I I 3,000.01 -25,400.00 

(Pi2002/Pf 2001 ) 
00 0-0.25 

00 0.26 -0.50 

1 I 0.50-0.75 

I I 0.76-1.00 

I I 1.01-1.50 

I ' "I 1.51-2.00 

00 2.01 -2.50 

1 l2.51-3i.00 

I I 3.01 -10.87 

(Pf2002/PI2002) 
m o -
00 0.25 - 0.50 

1 I 0.51 - 0.75 

I I 0.76-1.00 

I 1 1.01-1.50 

1.51 -2.00 

^02.01-2.50 

I I 2.51 - 3.00 

I I 3.01 - 5.00 

Figure 4. Maps of within-season changes in SCN population densities (Pft/Pit) and between-

season changes in SCN population densities (Pi(t+i)/Pft) obtained at the Bruner Farm 

experiment from 2001 to 2003. 
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V 

IDC scale 

H 0 - 0.20 

H 0.21 - 0.45 

I 0.46 - 0.65 

I 0.66 - 0.90 

I 0.91 -1.10 

1.11-1.35 

U 1.36-1.55 

I 1.56-1.75 

I 1.76-2.00 

N 

Bruner Farm - 2002 

Figure 5. Map of quadrats exhibiting visible symptoms of iron deficiency chlorosis (IDC) at 

the Bruner Farm experiment in 2002. 



www.manaraa.com

SCN egg 

2000 
nilation density 

Soybean 

Planting 2000 
SCN egg/100 cc soil 
H 0.25-1,400 
H 1,401 -2,800 
I I 2,800 - 4,200 
I I 4,201 - 5,600 
I I 5,601 -7,100 
BSFFL 7.101 -8,500 
HI 8,501 - 9,900 
I 19,901 -11,300 
I I 11,301 -12,700 

Soybean yield 
g/ quadrat 
H 194.0 - 305.5 
— 3056-4171 
• 417.2 - 528.7 

I I 528.8 - 640.2 
I 1640.3 - 751.8 
1 751.9 - 863.3 
H 863.4 - 974.8 
I | 974.9 -1,086.4 
I I 1,086.4-1,200.0 

2002 
SCN egg population density 

Soybean 100-seed 

Planting 2002 
SCN egg/100 cc soil 
HI 390 - 6,060 
GG 6,061 -11,730 
I I 11,731 -17,400 
I I 17,401 -23,070 
I I 23,071 -28,740 
MM 28.741 - 34,410 
JU 34,411-40,080 
I 140,081 -45,750 
I [45,751 -51,420 

100-seed weight 
g /100 seed 
M 11.00-11.40 
BHB 11.413-11.90 
I I 11.91 - 12.30 
I | 12.31-12.80 
I | 12.81-13.20 
— 13.21 - 13 70 
M 13.71-14.10 
•• 14.11-14.50 
I I 14.51 -15.00 

Figure 6. Maps of SCN population densities, soybean yield, 

2000 and 2002. 

and 100-seed weight for the Woodruff Farm experiment 
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2001 
SCN egg population density 

Soybean seed protein 

Soybean seed oil 

Hunting 2001 
SCN egg/ 100 cc soil 
M 0-100 
00 1001 -200 

I 1201-500 

I 1501-1,000 

I I 1,001 -1,500 

«8 1,501-2,500 

^0 2,501 - 5,000 

0 5,001 - 7,500 

1 I 7,501 -10,000 

Seed Protein 
<%) 
00 29 00 - 29.87 

00 M " - 30.59 

1 I 30.60 - 31.18 

I I 31 19 -3174 

I I 31.75 - 32.30 

00 32 82 - 33.40 

1 I 33.41 - 34,06 

I I 34.07 - 35.00 

Seed Oil 
(%) 
00 19.00-19.45 

00 19.46-19.76 

1 I 19.77-19.94 

I I 1995-20 15 

I 120.16 - 20.49 

—» 20.50 - 20.81 

•I 20.82-21.01 

I I 21.02 -21.31 

[33 21.32-22.00 

2002 
SCN egg population density ig population aen yrzm-

Soybean yield 

Soybean 100-seed weight 

Planting 2002 
SCN egg/100 cc soil 
00 600 - 4,300 

00 4,301 -6,800 

1 I 6,801-9,300 

I I 9,301-11.550 

I I 11,551 -14,000 

14,001-17,100 

00 17,101 -21,700 

1 I 21,701 -33,000 

I I 33,001 -53,600 

Soybean Yield 
g/ quadrat 

00 346.2 - 507.8 

00 507.9 - 583.2 

1 I 583.3-639.8 

I 1639.9-685.6 

I I 685.7 - 728.6 

[ilia 728.7 - 774.4 

00 774.5 - 822.9 

1 I 823.0 - 874.0 

I 1 874.1-1,035.6 

100-seed weight 
g/100 seeds 
00 11.00-12.50 

00 12.51 -13.00 

1 I 13.01 -13.50 

I I 13.51 -14.00 

I I 14.01 -14.50 

MM 1451 -1500 

00 15.01-15.50 

1 I 15.51 -16.00 

I I 16.01 -16.98 

Figure 7. Maps of SCN population densities, soybean yield, 100-seed weight, seed protein, and seed oil for the Bruner 

Farm experiment for 2001 and 2002. 
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CHAPTER 5 

GENERAL SUMMARY 

Three interdependent research projects comprise this dissertation. The first project 

was developed to understand how the relationships among percentage reflectance data for 

individual wavelength bands, vegetation indices (VI), and soybean growth indicated as green 

leaf area index (GLAI) vary within and between soybean seasons. The relationships among 

reflectance data and soybean GLAI were studied by generating a wide range of soybean 

development throughout the 2002 and 2003 seasons and by measuring percentage reflectance 

from those soybean canopies at different assessment dates within a season. The relationships 

between reflectance data and soybean GLAI were described using regressions, and the 

regressions obtained at different assessment dates were compared using a general linear test 

approach. Our result showed that within assessment dates, the percentage reflectance for the 

660-nm and 810-nm-wavelength bands had the best relationship with GLAI. However, the 

regressions of percentage reflectance from these two wavelength bands on GLAI obtained at 

different assessment dates were significantly different from the regressions of these same 

variables obtained for the entire season. Among VI, radiance ratio (RR), difference 

vegetation index (DVI), and renormalized difference vegetation index (RDVI) had the best 

relationships with yield within assessment dates. But, only the regressions of RDVI on GLAI 

obtained within season were not significantly different from the regression of RDVI on 

GLAI for each season. Differences in the regressions obtained for different assessment dates 

indicate that the relationships between reflectance data and GLAI vary throughout the 

season. Probably, temporal changes in environmental factors that affect reflectance from 

soybean canopies and/or the soybean canopies themselves are affecting the slopes and 

intercepts of the regressions. More research needs to be conducted to determine and to 
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control those factors. Other results of our study indicate reflectance measurements from 

several wavelength bands and VI are highly related to each other. These relationships suggest 

that at least some of the wavelength bands and VI may be considered equivalent in the ability 

of assessing GLAI. For instance, equivalence was observed between normalized difference 

vegetation index (NDVI) and green normalized difference vegetation index (GNDVI). 

Finally, our results showed that ground-based remote sensing measuring percentage 

reflectance from soybean canopies can be used to estimate soybean GLAI throughout seasons 

with a very high resolution. 

Our second research project was to determine if ground-based assessment of 

percentage reflectance from soybean canopies could be used to assess quantity and quality of 

soybean yield and stresses caused in soybean plants by soybean cyst nematodes (SCN). This 

project was conducted in two different experiments with 995 and 613 2 X 3 m quadrats from 

2000 to 2002. From each quadrat, percentage reflectance was measured every 7 to 14 days 

using a handheld, multispectral radiometer. Additionally, SCN egg population densities were 

determined for each quadrat at planting and at harvest. Soybean grain yield was obtained for 

each quadrat and also seed protein and seed oil contents and 100-seed weight. Our results 

show how the relationships among reflectance data, quantity and quality of soybean yield, 

and SCN population densities develop during the soybean season. Considering the soybean 

cultivar, the geographical location of our fields, and the planting dates, our results showed 

that reflectance data from soybean canopies obtained during August and September had the 

best relationships with quantity and quality of soybean yield. Soybean grain yield and 

reflectance data indicated as near infrared reflectance (NIR), radiance ratio (RR), 

renormalized difference vegetation index (RDVI), and green normalized difference 

vegetation index (GNDVI) had their best relationships when reflectance from soybean 

canopies was measured from late August to early September. However, these relationships 

between VI and grain yield were negatively affected by lodging of soybean plants. The 
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relationships among reflectance data, seed protein, seed oil, and 100-seed weight varied 

among years and fields. Soybean cyst nematode population densities at planting were best 

related to reflectance data at the very beginning or at the end of the growing seasons. It is 

logical to assume that soil has a greater influence on the total reflectance obtained for each 

quadrat very early and very late in the soybean season than in the middle of the season, when 

foliage completely covers the surface of the quadrats. Thus, the relationships between 

reflectance and SCN population densities at planting verified very early in the seasons may 

somewhat represent the relationships between SCN population densities and soil 

characteristics. When the best relationships between reflectance data and SCN population 

density was observed at the end of the growing season, effects of SCN on the soybean 

growth should be considered besides the characteristics of soil reflectance. Early senescence 

of soybean plants that were infected early in the growing season can possibly improve the 

relationships between SCN population densities at planting and reflectance data. There was 

not a single wavelength band or VI that showed to be superior to the others in the 

relationships with reflectance data for both experimental fields. Results from this work 

indicate that reflectance data is related to soybean growth and soybean yield. Additionally, it 

is important to note our results show that it is possible to estimate soybean yield using 

ground-based percentage reflectance measurements one month before harvest. 

Finally, the third research project dealt with the study of SCN population density 

dynamics, the spatial analyses of the SCN population densities, and the relationships between 

SCN population densities and quantity and quality of soybean yield under monoculture of 

SCN-susceptible soybean cultivars. The SCN population density data and soybean yield data 

collected were the same as were described for the second project. It was observed that mean 

SCN population density per quadrat increased (2000 and 2001) and decreased (2002) within 

growing seasons, and these densities were probably affected by environmental factors, such 

as temperature and soil moisture. Limits of the spatial structure (range) and variations in 
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spatial dependence (partial sill to sill ratio) varied within and between seasons in both 

experimental fields. It was not clear how different environmental factors, such as temperature 

and soil moisture, affected the range and the spatial dependence of SCN population densities 

in the two experiments. Spatial statistics associated with geographic information systems has 

the advantage of allowing the visualization of the results in maps. Changes in SCN 

population densities in the experiments within and between seasons suggest that factors exist 

that affect the carrying capacity of soybean fields among growing seasons. Changes in SCN 

population densities within a season were best related to the SCN population densities found 

at planting. However, these relationships between SCN population densities at planting and 

the within-season changes in SCN population densities deteriorated when environmental 

factors possibly negatively affected reproduction and/or survival of SCN. Soybean yield was 

negatively related to SCN population density at planting, and reduction in grain yield could 

be partially explained by the reduction in seed size. Also, it was observed that high SCN 

population densities were associated with an increase in seed protein and a decrease in seed 

oil content. A final important aspect of this study was the observations of the symptoms of 

iron deficiency chlorosis in the same areas the highest SCN population densities were found. 

More study needs to be done to understand the combined effects of SCN infection and iron 

deficiency on soybean plants and on soybean yield. Moreover, it is important to determine 

how iron deficiency may affect SCN population dynamics. 
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